Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies Suggest New Key to “Switching Off” Hypertension

23.07.2013
A team of University of California, San Diego researchers has designed new compounds that mimic those naturally used by the body to regulate blood pressure. The most promising of them may literally be the key to controlling hypertension, switching off the signaling pathways that lead to the deadly condition.

Published online this month in Bioorganic & Medicinal Chemistry, the scientists studied the properties of the peptide called catestatin that binds nicotinic acetylcholine receptors found in the nervous system, and developed a pharmacophore model of its active centers.


Catestatin-mimic pharmacophore model. Pharmacophore centers correspond to hydrophobic residues Leu5, Phe7, and Phe14; and positively charged residues Arg8, Arg10, and Arg15. Green circles represent hydrophobes and aromatic/hydrophobic features, while dark-blue circles represent NCN+ groups/cations/H-bond donors. Ribbon diagram and three-dimensional residue structures belong to superimposed catestatin. Image courtesy of Valentina Kouznetsova, UC San Diego.

They next screened a library of compounds for molecules that might match this 3D “fingerprint”. The scientists then took their in-silico findings and applied them to lab experiments, uncovering compounds that successfully lowered hypertension.

“This approach demonstrates the effectiveness of rational design of novel drug candidates,” said lead author Igor F. Tsigelny, a research scientist with the university’s San Diego Supercomputer Center (SDSC), as well as the UC San Diego Moores Cancer Center and the Department of Neurosciences.

“Our results suggest that analogs can be designed to match the action of catestatin, which the body uses to regulate blood pressure,” said Daniel T. O’Connor, a professor at the UC San Diego School of Medicine and senior author of the study. “Those designer analogs could ultimately be used for treatment of hypertension or autonomic dysfunction.”

The research may lead to a new class of treatments for hypertension, a disease which affects about 76 million people, or about one in three adults, in the United States, according to the American Heart Association. Untreated, it damages the blood vessels and is a leading risk factor for kidney failure, heart attack, and stroke.

Despite being a common and lethal cardiovascular risk factor, hypertension remains only partially controlled by current antihypertensive medications, most of which have serious side effects. Specifically, the SDSC/UC San Diego researchers targeted the hormone catestatin for therapeutic potential. Catestatin acts as the gatekeeper for the secretion of catecholamines – hormones that are released into the blood during times of physical or emotional stress. A drug that mimics the action of catestatin would thus allow people to control the hormones that regulate blood pressure.

Based on earlier studies of the structure of catestatin, O’Connor, Tsigelny, and their colleagues figured out which residues of catestatin are responsible for binding to the nicotinic receptor – similar to mapping how the ridges on a key fit into a lock. They created a three-dimensional model of the most important binding centers – the pharmacophore model. Then they screened about 250,000 3D compound structures in the Open NCI Database to select ones that fit this fingerprint of active centers. They discovered seven compounds that met the requirements, and tested those compounds in live cells to gauge their effects on catecholamines. Based on their findings, they tried one compound (TKO-10-18) on hypertensive mice, and showed that this compound produced the same anti-hypertensive effect as catestatin.

“Analysis of the catestatin molecule yielded a family of small organic compounds with preserved potency and pathway specificity,” said Valentina Kouznetsova, PhD, an associate project scientist at SDSC and the UC San Diego Moores Cancer Center. “Further refinement of our model should lead to the synthesis and development of a novel class of antihypertensive agents.”

Authors include SDSC’s Tsigelny, O’Connor, and Kouznetsova, as well as Nilima Biswas and Sushil K. Mahata, of UC San Diego’s Departments of Medicine and Pharmacology.

Media Contact

Cassie Ferguson, casferguson@gmail.com
Secondary media contact:
Jan Zverina, 858-534-5111, jzverina@sdsc.edu

Cassie Ferguson | EurekAlert!
Further information:
http://www.ucsd.edu/
http://ucsdnews.ucsd.edu/pressrelease/studies_suggest_new_key_to_switching_off_hypertension

Further reports about: Cancer blood pressure blood vessel hypertension risk factor

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>