Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies shed light on why species stay or go in response to climate change

20.08.2012
Two new studies by scientists at UC Berkeley provide a clearer picture of why some species move in response to climate change, and where they go.
One study, published online Monday, Aug. 6, in the journal Global Change Biology, finds that changes in precipitation have been underappreciated as a factor in driving bird species out of their normal range. In the other study, published today (Wednesday, Aug. 15) in the journal Proceedings of the Royal Society B, researchers found a sharp decrease in range for the Belding’s ground squirrel, but noted some surprising areas where the species found refuge.

The two studies exemplify the type of research being explored through the Berkeley Initiative in Global Change Biology, or BiGCB, an ambitious effort to better understand and predict how plants and animals will respond to changing environmental conditions by studying how they have responded to earlier periods of climate change.

The first study’s findings challenge the conventional reliance on temperature as the only climate-related force impacting where species live. The authors noted that as many as 25 percent of species have shifted in directions that were not predicted in response to temperature changes, yet few attempts have been made to investigate this.

“Our results redefine the fundamental model of how species should respond to future climate change,” said study lead author Morgan Tingley, who began the research as a graduate student in UC Berkeley’s Department of Environmental Science, Policy and Management. “We find that precipitation changes can have a major, opposing influence to temperature in a species’ range shift. Climate change may actually be tearing communities of organisms apart.”

The findings are based upon data gathered from the Grinnell Resurvey Project, which retraces the steps of Joseph Grinnell, founder of the UC Berkeley Museum of Vertebrate Zoology, in his surveys of Sierra Nevada wildlife from the early 1900s. The resurvey project, which began in 2003, was led by Craig Moritz, former UC Berkeley professor of integrative biology, and his colleagues at the Museum of Vertebrate Zoology.

For the bird study, the researchers included 99 species in 77 historic survey sites in Lassen Volcanic, Yosemite and Sequoia national parks, as well as in several national forests. In the century that has passed since the original Grinnell survey, summer and winter temperatures have increased an average of 1-2 degrees Celsius in the Sierra Nevada. Yosemite experienced the most warming — with average temperatures increasing by 3 degrees Celsius — while parts of Lassen actually got cooler and much wetter.

Among the bird species that moved upslope are the Savannah Sparrow, which shifted upward by 2,503 meters, and other meadow species such as the Red-winged Blackbird and Western Meadowlark. The ones that shifted their range downslope include both low-elevation species like the Ash-throated Flycatcher and Western Scrub-Jay, and high-elevation species like the Cassin’s Finch and Red-breasted Nuthatch.

“Temperature did not explain the majority of these shifts,” said Tingley, who is now a postdoctoral researcher at Princeton University’s Program in Science, Technology and Environmental Policy. ”Only when we included precipitation as an explanatory variable did our models adequately explain the movement patterns we observed.”

The researchers found that while rising temperatures tended to push birds to cooler regions upslope, increased precipitation, which is more common at higher elevations, pulled them downslope.

“We believe many species may feel this divergent pressure from temperature and precipitation, and in the end, only one wins,” said Tingley.

Notably, more than half of the bird species in each of the three study regions did not shift their range despite pressures from climate change. “Moving is a sign of adaptation, which is good from a conservation standpoint,” said Tingley. “More worrisome are the species that have not shifted. How are they adapting? Are they moving, but we just can’t detect it? Or are they slowly declining as environmental conditions gradually become less ideal where they live?”

The answers are complex, as illustrated by the second UC Berkeley paper about range changes for a species of squirrel found in the mountains of the western United States.

In that paper, researchers again used information obtained from the Grinnell Resurvey Project. Through visual observations and trapping surveys conducted throughout the mountains of California, they discovered that the Belding’s ground squirrel had disappeared from 42 percent of the sites where they were recorded in the early 1900s. Extinctions were particularly common at sites with high average winter temperatures and large increases in precipitation over the last century.

“We were surprised to see such a dramatic decline in this species, which is well-known to Sierran hikers and was thought to be fairly common,” said study lead author Toni Lyn Morelli, a former National Science Foundation postdoctoral researcher who was based at UC Berkeley. “In fact, the rate of decline is much greater than that seen in the same region for the pika, a small mountain-dwelling cousin of the rabbit that has become the poster child for the effects of climate warming in the contiguous United States.”

Morelli added that the squirrels are thriving in areas that have been modified by humans. For example, irrigated Mono Lake County Park serves as an artificial oasis that sustains squirrel populations despite otherwise hot and dry conditions in eastern California.

“As predictions indicate that the range of the Belding’s ground squirrel could disappear out of California by the end of the century, these areas might be particularly important for this and other climate-impacted species,” said Morelli, who is now a technical advisor for the U.S. Forest Service’s International Programs in the Democratic Republic of Congo.

Although the Belding’s ground squirrel is widespread, the rapid decline in its distribution is of concern because it is an important source of food for raptors and carnivores. However, the paper suggests that even when climate change causes large range declines, some species can persist in human-modified areas.

“Taken together, these two studies indicate that many species have been responding to recent climate change, yet the complexities of a species’ ecological needs and their responses to habitat modification by humans can result in unanticipated responses,” said Steven Beissinger, professor at UC Berkeley’s Department of Environmental Science, Policy and Management and the senior author on both studies. “This makes it very challenging for scientists to project how species will respond to future climate change.”

Funding from the National Science Foundation, National Park Service, and California Landscape Conservation Cooperative helped support this research.

RELATED INFORMATION
Museum scientists to repeat landmark 80-year-od Yosemite wildlife survey (UC Berkeley press release)
Sierra Nevada birds move in response to warmer, wetter climate (UC Berkeley press release)
Grinnell Resurvey Project
Berkeley Initiative in Global Change Biology

Sarah Yang | EurekAlert!
Further information:
http://newscenter.berkeley.edu/2012/08/15/climate-change-range-shift/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>