Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student research team sequences genome of bacterium discovered in Virginia Tech garden

22.04.2010
Under the supervision of a Virginia Tech plant pathologist, a group of high school, undergraduate, and graduate students isolated and characterized a formerly unknown group of bacteria.

The bacteria strain belongs to the plant pathogen species Pseudomonas syringae. One bacterium of this group, strain 642, was isolated at the Hahn Horticulture Garden and is the first bacterium isolated on the Virginia Tech campus to have its genome sequenced.

"I collaborate with John Kowalski's high school students at the Roanoke Valley Governor's School for Science and Technology, undergraduate students from Concord University in West Virginia, and graduate students at Virginia Tech to teach about the role of bacteria in the environment and, in particular, their importance to plants, using a hands-on approach," said Boris Vinatzer, assistant professor of plant pathology, physiology, and weed science in the College of Agriculture and Life Sciences.

Found on a wide variety of plants, many strains of P. syringae cause plant diseases such as bacterial blight, spot, speck, stripes, and canker. When springs are wet and cool, P. syringae can severely reduce crop yield and quality. However, P. syringae strain 642 does not cause disease on any tested plant species.

"Because the bacterium we isolated and sequenced is nonpathogenic itself but is very similar to pathogens, we can compare its genome to the genomes of the closely related pathogens and see what mechanisms bacteria use to cause disease and how bacteria evolve to become pathogens," Vinatzer said.

When Vinatzer genetically analyzed this unique group of P. syringae bacteria two years ago, he compared it with other bacteria that had been studied by researchers in the past. He was surprised when he found that the first genetically engineered bacterium ever released into the environment in 1987 belonged to this same group of bacteria. Nearly 30 years ago, Steve Lindow, a researcher at the University of California at Berkeley, had genetically engineered this bacterium to protect plants from frost by deleting a gene that makes a protein causing water to freeze at relatively high temperatures.

"Also a bacterium isolated in upstate New York by Cornell University researchers belongs to the same group of bacteria and was found to control a fungus that causes a disease of apple," Vinatzer added.

Maureen Farrell, of Aldie, Va., a sophomore majoring in biological sciences in the College of Science, and Christopher Clarke, of Atlanta, Ga., a graduate student in the Department of Plant Pathology, Physiology, and Weed Science, are now trying to determine whether the bacterium has the same effect on a pathogen causing a devastating disease of snap bean in Virginia. "This bacterium could potentially be used to protect crops from many different pathogens, but finding the best way to deploy it in the field is a challenge" said Vinatzer.

"We also found several genes in this bacterium that are similar to genes in a human pathogen, but fortunately know that this bacterium cannot cause disease in humans since it stops growing at 30 degrees Celsius," Vinatzer said.

In addition to Vinatzer and Clarke, the researchers included Rongman Cai,of Lixian, China, a graduate student in Virginia Tech's Department of Plant Pathology, Physiology, and Weed Science; David Studholme of the Sainsbury Laboratory in Norwich, England; and David Guttman of the Centre for the Analysis of Genome Evolution and Function at the University of Toronto. The team submitted the genome to GenBank, the National Institutes of Health genetic sequence database, and published its findings in the February 2010 issue of Molecular-Plant Microbe Interactions.

The National Science Foundation (NSF) funds Vinatzer's research. In addition to this project, Vinatzer has a $1 million, five-year Faculty Early Career Development (CAREER) Award to investigate the strain of P. syringae that causes bacterial speck disease in tomatoes and to develop a new undergraduate course in microbial genomics. The CAREER grant searches for answers about the evolution on plant pathogenic bacteria since the advent of agriculture.

Nationally ranked among the top research institutions of its kind, Virginia Tech's College of Agriculture and Life Sciences focuses on the science and business of living systems through learning, discovery, and engagement. The college's comprehensive curriculum gives more than 2,400 students in a dozen academic departments a balanced education that ranges from food and fiber production to economics to human health. Students learn from the world's leading agricultural scientists, who bring the latest science and technology into the classroom.

Michael Sutphin | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>