Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student research team sequences genome of bacterium discovered in Virginia Tech garden

22.04.2010
Under the supervision of a Virginia Tech plant pathologist, a group of high school, undergraduate, and graduate students isolated and characterized a formerly unknown group of bacteria.

The bacteria strain belongs to the plant pathogen species Pseudomonas syringae. One bacterium of this group, strain 642, was isolated at the Hahn Horticulture Garden and is the first bacterium isolated on the Virginia Tech campus to have its genome sequenced.

"I collaborate with John Kowalski's high school students at the Roanoke Valley Governor's School for Science and Technology, undergraduate students from Concord University in West Virginia, and graduate students at Virginia Tech to teach about the role of bacteria in the environment and, in particular, their importance to plants, using a hands-on approach," said Boris Vinatzer, assistant professor of plant pathology, physiology, and weed science in the College of Agriculture and Life Sciences.

Found on a wide variety of plants, many strains of P. syringae cause plant diseases such as bacterial blight, spot, speck, stripes, and canker. When springs are wet and cool, P. syringae can severely reduce crop yield and quality. However, P. syringae strain 642 does not cause disease on any tested plant species.

"Because the bacterium we isolated and sequenced is nonpathogenic itself but is very similar to pathogens, we can compare its genome to the genomes of the closely related pathogens and see what mechanisms bacteria use to cause disease and how bacteria evolve to become pathogens," Vinatzer said.

When Vinatzer genetically analyzed this unique group of P. syringae bacteria two years ago, he compared it with other bacteria that had been studied by researchers in the past. He was surprised when he found that the first genetically engineered bacterium ever released into the environment in 1987 belonged to this same group of bacteria. Nearly 30 years ago, Steve Lindow, a researcher at the University of California at Berkeley, had genetically engineered this bacterium to protect plants from frost by deleting a gene that makes a protein causing water to freeze at relatively high temperatures.

"Also a bacterium isolated in upstate New York by Cornell University researchers belongs to the same group of bacteria and was found to control a fungus that causes a disease of apple," Vinatzer added.

Maureen Farrell, of Aldie, Va., a sophomore majoring in biological sciences in the College of Science, and Christopher Clarke, of Atlanta, Ga., a graduate student in the Department of Plant Pathology, Physiology, and Weed Science, are now trying to determine whether the bacterium has the same effect on a pathogen causing a devastating disease of snap bean in Virginia. "This bacterium could potentially be used to protect crops from many different pathogens, but finding the best way to deploy it in the field is a challenge" said Vinatzer.

"We also found several genes in this bacterium that are similar to genes in a human pathogen, but fortunately know that this bacterium cannot cause disease in humans since it stops growing at 30 degrees Celsius," Vinatzer said.

In addition to Vinatzer and Clarke, the researchers included Rongman Cai,of Lixian, China, a graduate student in Virginia Tech's Department of Plant Pathology, Physiology, and Weed Science; David Studholme of the Sainsbury Laboratory in Norwich, England; and David Guttman of the Centre for the Analysis of Genome Evolution and Function at the University of Toronto. The team submitted the genome to GenBank, the National Institutes of Health genetic sequence database, and published its findings in the February 2010 issue of Molecular-Plant Microbe Interactions.

The National Science Foundation (NSF) funds Vinatzer's research. In addition to this project, Vinatzer has a $1 million, five-year Faculty Early Career Development (CAREER) Award to investigate the strain of P. syringae that causes bacterial speck disease in tomatoes and to develop a new undergraduate course in microbial genomics. The CAREER grant searches for answers about the evolution on plant pathogenic bacteria since the advent of agriculture.

Nationally ranked among the top research institutions of its kind, Virginia Tech's College of Agriculture and Life Sciences focuses on the science and business of living systems through learning, discovery, and engagement. The college's comprehensive curriculum gives more than 2,400 students in a dozen academic departments a balanced education that ranges from food and fiber production to economics to human health. Students learn from the world's leading agricultural scientists, who bring the latest science and technology into the classroom.

Michael Sutphin | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>