Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural defects precede functional decline in heart muscle

31.08.2010
The disruption of a structural component in heart muscle cells, which is associated with heart failure, appears to occur even before heart function starts to decline, according to a new study by researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

The structure is a highly organized network of grooves in heart muscle membrane called T-tubules. This network is essential for transmitting electrical signals to the cell's interior where they are translated into contractions that make the heart beat.

It was previously known that T-tubules become very disorganized during heart failure. The new study, published in the Aug. 20 issue of the journal Circulation Research, shows that this disorganization starts well before heart failure occurs during a stage known as compensated hypertrophy, when the heart muscle is enlarged but still able to pump a normal amount of blood around the body.

"Although heart function appears normal during compensated hypertrophy, we found that there already is structural damage," said Long-Sheng Song, M.D., senior author of this paper and UI assistant professor of internal medicine. "Our study suggests that things are going wrong very early in the process, and if we could prevent or slow this damage, we might be able to delay the onset of heart failure."

The researchers used a state-of-the-art imaging technique called laser scanning confocal microscope to visualize these structural changes in an animal model of heart failure. The study compared T-tubule structure and heart function at different stages of heart disease and found that the more disorganized the T-tubule network becomes, the worse the heart functions.

Moreover, the researchers found that T-tubule disorganization was also accompanied by a reduction in levels of a molecule called junctophilin-2, which is thought to be involved in formation of T-tubule networks. In cell experiments, loss of this molecule led to reduced T-tubule integrity.

Although the new findings are not ready to be applied in a clinical setting, understanding how T-tubule disruption occurs may lead to new ways to diagnose or treat heart failure.

In addition to Song, UI researchers involved in the study included Sheng Wei; Ang Guo; Biyi Chen; William Kutschke; Yu-Ping Xie; Kathy Zimmerman, Robert Weiss; and Mark Anderson. The team also included Heping Cheng from Peking University, Beijing, China.

The study was funded in part by grants from the National Institutes of Health, the American Heart Association and Chinese Scholarship Council. In addition, gifts from the Albaghdadi family of Clinton, Iowa, contributed to the purchase of the laser scanning confocal microscope used in the study.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>