Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural defects precede functional decline in heart muscle

31.08.2010
The disruption of a structural component in heart muscle cells, which is associated with heart failure, appears to occur even before heart function starts to decline, according to a new study by researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

The structure is a highly organized network of grooves in heart muscle membrane called T-tubules. This network is essential for transmitting electrical signals to the cell's interior where they are translated into contractions that make the heart beat.

It was previously known that T-tubules become very disorganized during heart failure. The new study, published in the Aug. 20 issue of the journal Circulation Research, shows that this disorganization starts well before heart failure occurs during a stage known as compensated hypertrophy, when the heart muscle is enlarged but still able to pump a normal amount of blood around the body.

"Although heart function appears normal during compensated hypertrophy, we found that there already is structural damage," said Long-Sheng Song, M.D., senior author of this paper and UI assistant professor of internal medicine. "Our study suggests that things are going wrong very early in the process, and if we could prevent or slow this damage, we might be able to delay the onset of heart failure."

The researchers used a state-of-the-art imaging technique called laser scanning confocal microscope to visualize these structural changes in an animal model of heart failure. The study compared T-tubule structure and heart function at different stages of heart disease and found that the more disorganized the T-tubule network becomes, the worse the heart functions.

Moreover, the researchers found that T-tubule disorganization was also accompanied by a reduction in levels of a molecule called junctophilin-2, which is thought to be involved in formation of T-tubule networks. In cell experiments, loss of this molecule led to reduced T-tubule integrity.

Although the new findings are not ready to be applied in a clinical setting, understanding how T-tubule disruption occurs may lead to new ways to diagnose or treat heart failure.

In addition to Song, UI researchers involved in the study included Sheng Wei; Ang Guo; Biyi Chen; William Kutschke; Yu-Ping Xie; Kathy Zimmerman, Robert Weiss; and Mark Anderson. The team also included Heping Cheng from Peking University, Beijing, China.

The study was funded in part by grants from the National Institutes of Health, the American Heart Association and Chinese Scholarship Council. In addition, gifts from the Albaghdadi family of Clinton, Iowa, contributed to the purchase of the laser scanning confocal microscope used in the study.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>