Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural defects precede functional decline in heart muscle

31.08.2010
The disruption of a structural component in heart muscle cells, which is associated with heart failure, appears to occur even before heart function starts to decline, according to a new study by researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine.

The structure is a highly organized network of grooves in heart muscle membrane called T-tubules. This network is essential for transmitting electrical signals to the cell's interior where they are translated into contractions that make the heart beat.

It was previously known that T-tubules become very disorganized during heart failure. The new study, published in the Aug. 20 issue of the journal Circulation Research, shows that this disorganization starts well before heart failure occurs during a stage known as compensated hypertrophy, when the heart muscle is enlarged but still able to pump a normal amount of blood around the body.

"Although heart function appears normal during compensated hypertrophy, we found that there already is structural damage," said Long-Sheng Song, M.D., senior author of this paper and UI assistant professor of internal medicine. "Our study suggests that things are going wrong very early in the process, and if we could prevent or slow this damage, we might be able to delay the onset of heart failure."

The researchers used a state-of-the-art imaging technique called laser scanning confocal microscope to visualize these structural changes in an animal model of heart failure. The study compared T-tubule structure and heart function at different stages of heart disease and found that the more disorganized the T-tubule network becomes, the worse the heart functions.

Moreover, the researchers found that T-tubule disorganization was also accompanied by a reduction in levels of a molecule called junctophilin-2, which is thought to be involved in formation of T-tubule networks. In cell experiments, loss of this molecule led to reduced T-tubule integrity.

Although the new findings are not ready to be applied in a clinical setting, understanding how T-tubule disruption occurs may lead to new ways to diagnose or treat heart failure.

In addition to Song, UI researchers involved in the study included Sheng Wei; Ang Guo; Biyi Chen; William Kutschke; Yu-Ping Xie; Kathy Zimmerman, Robert Weiss; and Mark Anderson. The team also included Heping Cheng from Peking University, Beijing, China.

The study was funded in part by grants from the National Institutes of Health, the American Heart Association and Chinese Scholarship Council. In addition, gifts from the Albaghdadi family of Clinton, Iowa, contributed to the purchase of the laser scanning confocal microscope used in the study.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>