Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: New target protein found

16.11.2009
Würzburg researchers have identified a protein that is partly responsible for the death of nerve cells in the brain during a stroke. This will open up new possibilities in therapy.

How do strokes occur? What tends to happen is that a clot blocks the blood vessels supplying the brain. The brain then becomes starved of blood and oxygen, as a consequence of which nerve cells start to die.

"A massive import of calcium ions into these nerve cells plays a major role in the death of the cells," explains Professor Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg. But the exact details of this process have been unclear, until now.

Sensor protein drives up calcium levels

The regulation of the inflow of calcium into the nerve cells has always been something of a mystery. One possible calcium regulator is the sensor protein STIM1: in blood cells it measures the concentration of calcium. If the level is too low, it stimulates import. It was also suspected that STIM1 played a similar role for nerve cells.

However, contrary to prevailing assumptions, it is not STIM1 that opens the floodgates for calcium during cerebral ischemia. Responsibility lies instead with STIM2 - a related protein to which science has always attributed a more minor role. This is the report given by Bernhard Nieswandt with colleagues from Würzburg and Leipzig in the journal Science Signaling.

Nerve cells fare better without STIM2

The research team discovered that nerve cells with no STIM2 survive an inadequate supply of blood or oxygen far more successfully than normal nerve cells. This evidence was obtained using cell cultures and mice. The areas of the brain left damaged by a stroke were reduced by more than half in the absence of STIM2.

Possible therapy: blockade of STIM2

What does this finding mean for stroke patients? Nothing yet. But it offers scientists a new starting point that they may be able to use to improve therapy and prevention.

"If the STIM2 protein can be blocked by a drug, this may alleviate the consequences of an ischemic stroke. Stroke patients often suffer paralyses as well as losses of sensation and impaired speech for which current therapies can only offer inadequate treatment," explains Professor Guido Stoll from the Department of Neurology at the University of Würzburg.

As their next step, the researchers wish to investigate which calcium channels in the nerve cells are opened by STIM2 and how this process can be influenced using substances.

Scientists from Würzburg and Leipzig involved

The following scientists from the University of Würzburg were involved in the work: Alejandro Berna-Erro, Attila Braun, David Stegner, and Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine/DFG Research Center; Guido Stoll, Christoph Kleinschnitz, Michael Schuhmann, and Sven Meuth from the Department of Neurology; and Thomas Wultsch from the Department of Psychiatry. Also involved were Robert Kraft and Jens Eilers from the Institute of Physiology at the University of Leipzig.

"STIM2 Regulates Capacity Ca2+ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death", Alejandro Berna-Erro, Attila Braun, Robert Kraft, Christoph Kleinschnitz, Michael K. Schuhmann, David Stegner, Thomas Wultsch, Jens Eilers, Sven G. Meuth, Guido Stoll, Bernhard Nieswandt, Science Signaling 2009, Vol. 2, Issue 93, p. ra67, Oct 20, DOI: 10.1126/scisignal.2000522

Contact

Prof. Dr. Bernhard Nieswandt, phone +49 931 31-80406, bernhard.nieswandt@virchow.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Neurology STIM1 STIM2 Science TV blood cell blood vessel nerve cell stroke

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>