Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: New target protein found

16.11.2009
Würzburg researchers have identified a protein that is partly responsible for the death of nerve cells in the brain during a stroke. This will open up new possibilities in therapy.

How do strokes occur? What tends to happen is that a clot blocks the blood vessels supplying the brain. The brain then becomes starved of blood and oxygen, as a consequence of which nerve cells start to die.

"A massive import of calcium ions into these nerve cells plays a major role in the death of the cells," explains Professor Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg. But the exact details of this process have been unclear, until now.

Sensor protein drives up calcium levels

The regulation of the inflow of calcium into the nerve cells has always been something of a mystery. One possible calcium regulator is the sensor protein STIM1: in blood cells it measures the concentration of calcium. If the level is too low, it stimulates import. It was also suspected that STIM1 played a similar role for nerve cells.

However, contrary to prevailing assumptions, it is not STIM1 that opens the floodgates for calcium during cerebral ischemia. Responsibility lies instead with STIM2 - a related protein to which science has always attributed a more minor role. This is the report given by Bernhard Nieswandt with colleagues from Würzburg and Leipzig in the journal Science Signaling.

Nerve cells fare better without STIM2

The research team discovered that nerve cells with no STIM2 survive an inadequate supply of blood or oxygen far more successfully than normal nerve cells. This evidence was obtained using cell cultures and mice. The areas of the brain left damaged by a stroke were reduced by more than half in the absence of STIM2.

Possible therapy: blockade of STIM2

What does this finding mean for stroke patients? Nothing yet. But it offers scientists a new starting point that they may be able to use to improve therapy and prevention.

"If the STIM2 protein can be blocked by a drug, this may alleviate the consequences of an ischemic stroke. Stroke patients often suffer paralyses as well as losses of sensation and impaired speech for which current therapies can only offer inadequate treatment," explains Professor Guido Stoll from the Department of Neurology at the University of Würzburg.

As their next step, the researchers wish to investigate which calcium channels in the nerve cells are opened by STIM2 and how this process can be influenced using substances.

Scientists from Würzburg and Leipzig involved

The following scientists from the University of Würzburg were involved in the work: Alejandro Berna-Erro, Attila Braun, David Stegner, and Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine/DFG Research Center; Guido Stoll, Christoph Kleinschnitz, Michael Schuhmann, and Sven Meuth from the Department of Neurology; and Thomas Wultsch from the Department of Psychiatry. Also involved were Robert Kraft and Jens Eilers from the Institute of Physiology at the University of Leipzig.

"STIM2 Regulates Capacity Ca2+ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death", Alejandro Berna-Erro, Attila Braun, Robert Kraft, Christoph Kleinschnitz, Michael K. Schuhmann, David Stegner, Thomas Wultsch, Jens Eilers, Sven G. Meuth, Guido Stoll, Bernhard Nieswandt, Science Signaling 2009, Vol. 2, Issue 93, p. ra67, Oct 20, DOI: 10.1126/scisignal.2000522

Contact

Prof. Dr. Bernhard Nieswandt, phone +49 931 31-80406, bernhard.nieswandt@virchow.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Neurology STIM1 STIM2 Science TV blood cell blood vessel nerve cell stroke

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>