Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: New target protein found

16.11.2009
Würzburg researchers have identified a protein that is partly responsible for the death of nerve cells in the brain during a stroke. This will open up new possibilities in therapy.

How do strokes occur? What tends to happen is that a clot blocks the blood vessels supplying the brain. The brain then becomes starved of blood and oxygen, as a consequence of which nerve cells start to die.

"A massive import of calcium ions into these nerve cells plays a major role in the death of the cells," explains Professor Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg. But the exact details of this process have been unclear, until now.

Sensor protein drives up calcium levels

The regulation of the inflow of calcium into the nerve cells has always been something of a mystery. One possible calcium regulator is the sensor protein STIM1: in blood cells it measures the concentration of calcium. If the level is too low, it stimulates import. It was also suspected that STIM1 played a similar role for nerve cells.

However, contrary to prevailing assumptions, it is not STIM1 that opens the floodgates for calcium during cerebral ischemia. Responsibility lies instead with STIM2 - a related protein to which science has always attributed a more minor role. This is the report given by Bernhard Nieswandt with colleagues from Würzburg and Leipzig in the journal Science Signaling.

Nerve cells fare better without STIM2

The research team discovered that nerve cells with no STIM2 survive an inadequate supply of blood or oxygen far more successfully than normal nerve cells. This evidence was obtained using cell cultures and mice. The areas of the brain left damaged by a stroke were reduced by more than half in the absence of STIM2.

Possible therapy: blockade of STIM2

What does this finding mean for stroke patients? Nothing yet. But it offers scientists a new starting point that they may be able to use to improve therapy and prevention.

"If the STIM2 protein can be blocked by a drug, this may alleviate the consequences of an ischemic stroke. Stroke patients often suffer paralyses as well as losses of sensation and impaired speech for which current therapies can only offer inadequate treatment," explains Professor Guido Stoll from the Department of Neurology at the University of Würzburg.

As their next step, the researchers wish to investigate which calcium channels in the nerve cells are opened by STIM2 and how this process can be influenced using substances.

Scientists from Würzburg and Leipzig involved

The following scientists from the University of Würzburg were involved in the work: Alejandro Berna-Erro, Attila Braun, David Stegner, and Bernhard Nieswandt from the Rudolf Virchow Center for Experimental Biomedicine/DFG Research Center; Guido Stoll, Christoph Kleinschnitz, Michael Schuhmann, and Sven Meuth from the Department of Neurology; and Thomas Wultsch from the Department of Psychiatry. Also involved were Robert Kraft and Jens Eilers from the Institute of Physiology at the University of Leipzig.

"STIM2 Regulates Capacity Ca2+ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death", Alejandro Berna-Erro, Attila Braun, Robert Kraft, Christoph Kleinschnitz, Michael K. Schuhmann, David Stegner, Thomas Wultsch, Jens Eilers, Sven G. Meuth, Guido Stoll, Bernhard Nieswandt, Science Signaling 2009, Vol. 2, Issue 93, p. ra67, Oct 20, DOI: 10.1126/scisignal.2000522

Contact

Prof. Dr. Bernhard Nieswandt, phone +49 931 31-80406, bernhard.nieswandt@virchow.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Neurology STIM1 STIM2 Science TV blood cell blood vessel nerve cell stroke

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>