Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretched polymer snaps back smaller than it started

27.08.2010
Crazy bands are cool because no matter how long they've been stretched around a kid's wrist, they always return to their original shape, be it a lion or a kangaroo.

Now a Duke and Stanford chemistry team has found a polymer molecule that's so springy it snaps back from stretching much smaller than it was before.

Duke graduate student Jeremy Lenhardt and associate professor Stephen Craig have been systematically hunting through a library of polymers in search of a molecule that might be useful for "self-healing" materials. They hope to find a polymer that can trigger a chemical reaction when it is stretched and enable a material to build its own repairs.

Imagine a sheet of Saran Wrap that could fix a microscopic puncture before the hole ever got big enough to see. This would require that the polymer molecules immediately around the tear could somehow jump into action and perform new chemistry to build bridges across the hole.

To stretch polymers and see what happens to them, Lenhardt uses an apparatus that pumps up and down on a solution filled with polymers, pressurizing it and depressurizing it 20,000 times a second which causes tiny bubbles to form fleetingly. The void created by the bubbles exerts a tug on the ends of some of the polymers in the solution and stretches them, if only for a billionth of a second.

"Think of two rafts going down a river with a rope between them," Craig explained. "As the first raft enters a rapids and accelerates forward, that rope – the polymer – gets pulled taught and stretches."

Over and over Lenhardt ran the experiment, characterizing different polymer species that became more reactive when stretched, potentially able to do "stress-induced chemistry."

Then, while looking at polymers that contained tiny ring-shaped molecules called gem-difluorocyclopropanes (gDFC), he was surprised to find that some of these molecules emerged from the stretching noticeably shorter than when they went in.

"I ran up to his office," Lenhardt said. " 'Steve, something funny is going on here. Look at this!' " A technique called nuclear magnetic resonance had revealed the shapes of the rings after pulling and shown that they were, in fact, shorter.

But not only were the gDFCs snapping back smaller than they started, it also appeared that before snapping back they were actually trapped in an unusual stretched state far longer than normal, a reactive state called a 1,3-diradical.

Normally, as a molecule goes through a reaction, it passes through a special point known as a transition state, and stays there for only ten to a hundred femtoseconds, "a tenth of a millionth of a millionth of a second," Craig said. This makes it extraordinary hard to actually watch chemistry happen, so chemists usually can only infer what happens at the transition state by what they've seen before and after.

Work by their Stanford collaborators showed that the trapped 1,3-diradicals are in fact one type of these usually fast-moving transition states, but in Lenhardt's experiments they were essentially stopped in their tracks and trapped for nanoseconds, tens of thousands of times longer than usual.

This might be a window for watching transition states in action, Craig said. "We can trap these things long enough to probe new facets of their reactivity."

Lenhardt has begun doing just that, stretching the polymers to learn more about these transition states and seeing if he can watch other molecules by using this technique as a sort of stop-action camera.

"Every chemical reaction has a high energy state that you have to guess at," Lenhardt said. "But maybe, in some cases, you don't have to guess anymore."

The team's findings appear Aug. 27 in Science.

Other team members include Duke undergraduate Robert Choe and at Stanford, graduate student Mitchell Ong, postdoc Christian Evenhuis and professor Todd Martinez.

The research was funded by the U.S. Army Research Laboratory and the Army Research Office.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: 3-diradical Stretched chemical reaction polymer molecule

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>