Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress can control our genes

27.09.2010
Stress has become one of the major disease states in the developed world. But what is stress? It depends on from where you look. You may experience stress as something that affects your entire body and mind, the causes of which are plentiful.

But if we zoom in on the building bricks of the body, our cells, stress and its causes are defined somewhat differently. Stress can arise at the cellular level after exposure to pollution, tobacco smoke, bacterial toxins etc, where stressed cells have to react to survive and maintain their normal function. In worst case scenario, cellular stress can lead to development of disease.

Researchers from Dr.Klaus Hansen's group at BRIC, University of Copenhagen, have just shown that external factors can stress our cells through the control of our genes. "We found that stress-activating factors can control our genes by turning on certain genes that were supposed to be silenced. It is very important that some genes are on and others are off in order to ensure normal foetal development and correct function of our cells later in life" says Dr. Klaus Hansen. Simmi Gehani, PhD-student in the Hansen group, found that exposing human cells to a stress-activating compound turned on silenced genes. Even brief changes in gene activation can be disastrous during foetal development as establishment of correct cellular identity can be disturbed in our cells. But altered gene activity can also have consequences in the adult body. "For example, one could imagine that prolonged stress causes nerve cells in the brain to produce hormones and other signalling molecules they do not normally produce and this can disturb normal brain function" says Simmi Gehani.

The Hansen research group is very interested in understanding how our genes are turned on and off. "We know that different protein complexes can associate with specific proteins (histones) to which DNA is wound around and thereby determine whether the genes are active or inactive. Small chemical groups can cause protein complexes to bind to histones and these can control gene activity" says Dr. Klaus Hansen. The researchers have studied in detail a complex called PRC2. PRC2 can attach small chemical groups - methyl groups - to the histones. Protective complexes can bind to the histones when this marker is present and the genes are turned off. Their new results show that the protective complexes are lost and selected genes turned on when cells are exposed to external stress factors. The reason why the complexes are lost is that the stress factors instruct an enzyme named MSK to attach another chemical group - a phosphate group - to the histones neighbouring the methyl group. The phosphate group neutralises the effect of the methyl group and turns specific genes on. "The consequence is that genes that should be turned off are now active and this may disturb cellular development, identity and growth" says Simmi Gehani. This means that without damaging our genetic code external stress factors can control the activity of our genes. The results are published today in the renowned international journal Molecular Cell.

Klaus Hansen | EurekAlert!
Further information:
http://www.bric.ku.dk

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>