Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress can control our genes

27.09.2010
Stress has become one of the major disease states in the developed world. But what is stress? It depends on from where you look. You may experience stress as something that affects your entire body and mind, the causes of which are plentiful.

But if we zoom in on the building bricks of the body, our cells, stress and its causes are defined somewhat differently. Stress can arise at the cellular level after exposure to pollution, tobacco smoke, bacterial toxins etc, where stressed cells have to react to survive and maintain their normal function. In worst case scenario, cellular stress can lead to development of disease.

Researchers from Dr.Klaus Hansen's group at BRIC, University of Copenhagen, have just shown that external factors can stress our cells through the control of our genes. "We found that stress-activating factors can control our genes by turning on certain genes that were supposed to be silenced. It is very important that some genes are on and others are off in order to ensure normal foetal development and correct function of our cells later in life" says Dr. Klaus Hansen. Simmi Gehani, PhD-student in the Hansen group, found that exposing human cells to a stress-activating compound turned on silenced genes. Even brief changes in gene activation can be disastrous during foetal development as establishment of correct cellular identity can be disturbed in our cells. But altered gene activity can also have consequences in the adult body. "For example, one could imagine that prolonged stress causes nerve cells in the brain to produce hormones and other signalling molecules they do not normally produce and this can disturb normal brain function" says Simmi Gehani.

The Hansen research group is very interested in understanding how our genes are turned on and off. "We know that different protein complexes can associate with specific proteins (histones) to which DNA is wound around and thereby determine whether the genes are active or inactive. Small chemical groups can cause protein complexes to bind to histones and these can control gene activity" says Dr. Klaus Hansen. The researchers have studied in detail a complex called PRC2. PRC2 can attach small chemical groups - methyl groups - to the histones. Protective complexes can bind to the histones when this marker is present and the genes are turned off. Their new results show that the protective complexes are lost and selected genes turned on when cells are exposed to external stress factors. The reason why the complexes are lost is that the stress factors instruct an enzyme named MSK to attach another chemical group - a phosphate group - to the histones neighbouring the methyl group. The phosphate group neutralises the effect of the methyl group and turns specific genes on. "The consequence is that genes that should be turned off are now active and this may disturb cellular development, identity and growth" says Simmi Gehani. This means that without damaging our genetic code external stress factors can control the activity of our genes. The results are published today in the renowned international journal Molecular Cell.

Klaus Hansen | EurekAlert!
Further information:
http://www.bric.ku.dk

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>