Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange diet for methane consuming microorganisms

06.11.2012
Methane supplies the energy but is not the carbon source

Methane is formed under the absence of oxygen by natural biological and physical processes, e.g. in the sea floor. It is a much powerful green house gas than carbon dioxide.


Where the samples were taken: The Guaymas Basin on the West coast of Mexico.

Rita Dunker, MPI BRemen

Thanks to the activity of microorganisms this gas is inactivated, before it reaches the atmosphere and unfolds its harmful effects on Earth´s climate. Researchers from Bremen have proven that these microorganisms are quite picky about their diet. Now they have published their results in the Proceedings of the National Academy of Sciences (PNAS).

Carbon can be the basic structural element...

All life on Earth is based on carbon and its compounds. Cell components of all creatures contain carbon. The cell can take up this basic structural element via organic matter, or the cell build up its own organic matter from scratch, i.e. carbon dioxide. Researchers termed the first cells heterotrophs and the latter autotrophs. All plants, many bacteria and archaea are autotrophs, whereas all animals, including humans, are heterotrophs. The autotrophs form the basis for the life of the heterotrophs and all higher life by taking up inorganic carbon to form organic material.

…and can be the energy source

To keep the cellular systems running all cells need fuel. Methane can be such a fuel. When studying the methane consuming microbes discovered by Bremen scientists more than ten years ago it was assumed that they take the methane for filling up their energy tanks and using it as a carbon source, i.e, they were thought to be heterotrophs.

Now scientists from MARUM and the Max Planck Institute for Marine Microbiology show in their PNAS research paper that this is surprisingly not the case and the methane derived carbon is not used as a carbon source. “Our growth studies clearly show that the labeled carbon in the methane never showed up directly in the cell material, but experiments with labeled carbon from carbon dioxide did. It was quite surprising, ” said PNAS author Matthias Kellermann. The archaea in the consortia behave like it is expected for chemoautotrophs.
“Archaea and the sulfate reducing bacteria are living close together in consortia, which are growing extremely slow. And only in the newly synthesized cell material we could find the answer for the question, from where the carbon originates,” adds Kai-Uwe Hinrichs, leader of the organic geochemistry group at MARUM.

Co-author Gunter Wegener from the Max Planck Institute concludes: ”With our new knowledge we can optimize our studies about the inactivation of methane in nature. Our surprising results tell us that we still know little details of this globally important process.”

Samples were retrieved from the Guaymas Basin on the West coast of Mexico from a depth of more the 2000 meters using the US diving submersible Alvin .

Manfred Schlösser

Further informations/ photo material/Interviews:
Dr. Manfred Schloesser, +49 421 2028704, mschloes mpi-bremen.de
Dr. Rita Dunker, +49 421 2028856, rdunker mpi-bremen.de
Albert Gerdes, +49 421 21865540, agerdesmarum.de

Institutions

Max Planck Institute for Marine Microbiology, Bremen
MARUM – Center for Marine environmental Research at the University of Bremen

Original article
Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities
Matthias Y. Kellermann, Gunter Wegener, Marcus Elvert, Marcos Yukio Yoshinaga, Yu-Shih Lin,
Thomas Holler, Xavier Prieto Mollar, Katrin Knittel, and Kai-Uwe Hinrichs
PNAS doi/10.1073/pnas.1208795109

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de/
http://www.marum.de/

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>