Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Story of Lymphatic System Expands to Include Chapter on Valve Formation

16.11.2011
A century after the valves that link the lymphatic and blood systems were first described, St. Jude Children’s Research Hospital scientists have detailed how those valves form and identified a gene that is critical to the process.

The gene is Prox1. Earlier work led by Guillermo Oliver, Ph.D., a member of the St. Jude Department of Genetics, showed Prox1 was essential for formation and maintenance of the entire lymphatic vasculature. The lymphatic vasculature is the network of vessels and ducts that help maintain the body’s fluid balance and serves as a highway along which everything from cancer cells to disease-fighting immune components moves. Oliver is senior author of the new study, which appeared in the October 15 edition of the scientific journal Genes & Development.

The new research suggests that Prox1 is also essential for proper formation of the one-way valves that control movement of fluid and nutrients from the lymphatic system into the blood stream. Researchers found evidence that the Prox1 protein also has a role in formation of the venous valves.

“Understanding how valves form is crucial to efforts to develop treatments for valve defects that affect both children and adults,” said the paper’s first author, R. Sathish Srinivasan, Ph.D., a research associate in the St. Jude Department of Genetics. Those defects are linked to a variety of problems including lymphedema and deep vein thrombosis, which are blood clots that form deep in veins and have the potential for causing life-threatening complications. Lymphedema is the painful and sometimes disfiguring swelling that can occur when lymph flow is disrupted.

For more than a decade, the lymphatic system has been a focus of Oliver’s laboratory. The laboratory’s contributions through the years include evidence that leaky lymphatic vessels might contribute to obesity. Oliver and his colleagues also demonstrated how the lymphatic system forms from Prox1-producing cells destined to become lymphatic endothelial cells (LECs) when they leave the developing veins and migrate throughout the body.

The investigators also showed the Coup-TFII gene is essential to the process. The Coup-TFII protein binds to the promoter region of the Prox1 gene. The binding switches on production of the Prox1 protein that is required to create and maintain the lymphatic system.

The newer research builds on that earlier work from Oliver’s laboratory. The latest study focused on the lymphovenous valves. These valves are found at just two locations in the body, on either side of the chest just under the clavicle bone where the lymphatic vessels intersect with the subclavian and internal jugular veins.

Working in mice, investigators discovered that these lymphovenous valves form from a newly identified subtype of endothelial cell found in developing veins. Like the LECs that form the lymphatic system, the newly identified endothelial cells make Prox1. But while the LECs leave the veins and migrate throughout the body, these endothelial cells stay put to form the lymphovenous valves.

Researchers demonstrated the process requires two copies of the Prox1 gene. That ensures adequate levels of the Coup-TFII-Prox1 complex and with it enough Prox1 to build and maintain the lymphatic system. Mice engineered to carry a single copy of Prox1 either did not survive or were born without lymphovenous and venous valves.

“If you have only one copy of Prox1 you are going to have a reduction in the Coup-TFII – Prox1 complex and so a dramatic reduction in the number of cells available to build the lymphatic system. That explains the defects we see,” Srinivasan said.

The study was supported in part by a grant from the National Institutes of Health and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital’s research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care. For more information, visit www.stjude.org.
St. Jude Public Relations Contacts:
Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>