Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping malignancy in its tracks

04.07.2011
A newly discovered natural product produced by a fungus prevents cancer cells from becoming malignant

An unusual chemical compound isolated from a mud-dwelling fungus found in a soil sample collected in Daejeon, South Korea, could lead to a new family of antitumor drugs.

Discovered by teams led by Jong Seog Ahn at the Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, and Hiroyuki Osada at the RIKEN Advanced Science Institute, Wako, the compound prevents cancerous cells from forming mobile colonies—the point at which cancers become malignant and spread through the body1. The teams began collaborating after Yukihiro Asami from RIKEN joined KRIBB.

The researchers spotted the compound while searching extracts of the fungus for candidate drug compounds using a recently developed screen called a 3D epithelial culture system. To date, this kind of biological assay has rarely been used to search for natural products with novel bioactivity, says Ahn. It was during the 3D screen, which they spiked with cancerous cells, that the researchers realized that a compound produced by the fungus was inhibiting the cancer cells from clumping together to form colonies (Fig. 1). This type of screen is difficult using a conventional two-dimensional cell culture.

The researchers isolated the bioactive compound and named it fusarisetin A. They then investigated its structure using an array of chemical characterization techniques, including nuclear magnetic resonance (NMR) and x-ray crystallography. They showed that fusarisetin A was a previously undescribed compound. Being able to grow crystals of the compound for x-ray studies was a breakthrough, says Osada. “It is very important for exact structural elucidation to get crystal analysis,” he says.

Having established that fusarisetin A is a new compound, the researchers probed its bioactivity in more detail. They showed that it simply blocks colony formation rather than killing cancer cells. They then compared the compound to others known to inhibit this process, and showed that it works differently to other compounds capable of blocking clumping. This suggests to the researchers that it could offer a new way to treat tumors.

The team is already working to discover how fusarisetin A inhibits the clumping of cancerous cells by looking for its molecular target. “We have already got candidate target proteins,” Osada adds.

Fusarisetin A itself is not bioactive enough to become a drug. However, it may be possible to fine-tune the structure to improve its activity, from which new drugs could be developed. “If we can get higher biological activity derivatives [of fusarisetin A], it may be possible,” says Ahn.

Reference

Jang, J.-H., Asami, Y., Jang, J.-P., Kim, S.-O., Moon, D.O., Shin, K.-S., Hashizume, D., Muroi, M., Saito, T., Oh, H., Kim, B.-Y., Osada, H. & Ahn, J.-S. Fusarisetin A, an acinar morphogenesis inhibitor from a soil fungus, Fusarium sp. FN080326. Journal of the American Chemical Society 133, 6865–6867 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>