Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping malignancy in its tracks

04.07.2011
A newly discovered natural product produced by a fungus prevents cancer cells from becoming malignant

An unusual chemical compound isolated from a mud-dwelling fungus found in a soil sample collected in Daejeon, South Korea, could lead to a new family of antitumor drugs.

Discovered by teams led by Jong Seog Ahn at the Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, and Hiroyuki Osada at the RIKEN Advanced Science Institute, Wako, the compound prevents cancerous cells from forming mobile colonies—the point at which cancers become malignant and spread through the body1. The teams began collaborating after Yukihiro Asami from RIKEN joined KRIBB.

The researchers spotted the compound while searching extracts of the fungus for candidate drug compounds using a recently developed screen called a 3D epithelial culture system. To date, this kind of biological assay has rarely been used to search for natural products with novel bioactivity, says Ahn. It was during the 3D screen, which they spiked with cancerous cells, that the researchers realized that a compound produced by the fungus was inhibiting the cancer cells from clumping together to form colonies (Fig. 1). This type of screen is difficult using a conventional two-dimensional cell culture.

The researchers isolated the bioactive compound and named it fusarisetin A. They then investigated its structure using an array of chemical characterization techniques, including nuclear magnetic resonance (NMR) and x-ray crystallography. They showed that fusarisetin A was a previously undescribed compound. Being able to grow crystals of the compound for x-ray studies was a breakthrough, says Osada. “It is very important for exact structural elucidation to get crystal analysis,” he says.

Having established that fusarisetin A is a new compound, the researchers probed its bioactivity in more detail. They showed that it simply blocks colony formation rather than killing cancer cells. They then compared the compound to others known to inhibit this process, and showed that it works differently to other compounds capable of blocking clumping. This suggests to the researchers that it could offer a new way to treat tumors.

The team is already working to discover how fusarisetin A inhibits the clumping of cancerous cells by looking for its molecular target. “We have already got candidate target proteins,” Osada adds.

Fusarisetin A itself is not bioactive enough to become a drug. However, it may be possible to fine-tune the structure to improve its activity, from which new drugs could be developed. “If we can get higher biological activity derivatives [of fusarisetin A], it may be possible,” says Ahn.

Reference

Jang, J.-H., Asami, Y., Jang, J.-P., Kim, S.-O., Moon, D.O., Shin, K.-S., Hashizume, D., Muroi, M., Saito, T., Oh, H., Kim, B.-Y., Osada, H. & Ahn, J.-S. Fusarisetin A, an acinar morphogenesis inhibitor from a soil fungus, Fusarium sp. FN080326. Journal of the American Chemical Society 133, 6865–6867 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>