Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping dangerous cell regrowth reduces risk of further heart attacks

08.12.2011
Like Yin and Yang, the two proteins have opposite effects in the walls of blood vessels.

AIF-1 stimulates undesirable formation of new cells after a vascular injury, and IRT-1 has the opposite effect. It is the latter, IRT-1, that Maria Gomez wants to use to stop a dangerous development in the artery, together with researchers at Lund University Diabetes Centre in Sweden and Temple University in the USA. They have already had success in animal experiments.

“After an arterial injury, the inner layer of cells in the artery begins to regrow. In the long term, this usually causes more harm than good”, says Maria Gomez.

A common cause of arterial injuries is the clearing of blocked arteries often performed on patients who have had a heart attack.

“Initially the artery is opened up, but after a while new cell formation increases the risk of further heart attacks.”

In animal experiments, the research groups have demonstrated the opposite effects of the two proteins. The carotid artery of rats was damaged with balloon dilation, simulating the procedure carried out on heart attack patients.

After two weeks, there was noticeably less new cell formation in the arteries that had more of the protein IRT-1. With AIF-1, the opposite effect was observed.

“The interesting thing is that both proteins are formed from the same gene and we have now found a mechanism to control the balance in the formation of the two. Using a new drug we can thus increase the amount of the ‘good’ protein, IRT-1. It is not an approved drug, but it has been tested on mice and appears to be tolerated well”, says Maria Gomez.

The researchers have also analysed over 150 fatty deposits (‘plaques’) removed from the carotid arteries of patients.

“We saw that the dangerous plaques – those that are unstable, easily rupture, are more inflamed and more often produce symptoms – contain more AIF-1. Those with a higher proportion of the protein IRT-1 are less dangerous”, observes Lisa Berglund, co-author of the published study.

Diabetes patients develop more plaques, and more often dangerous ones, than non-diabetics. Diabetics have a significantly higher risk of suffering a heart attack.

The regrowth of cells in the arteries also leads to negative changes in blood flow. It may even be the case that AIF-1 is involved in the actual formation of plaques in the arteries.

Heart attacks are the most common cause of death in Sweden and many patients have repeated attacks, which are treated by clearing constrictions in the arteries of the heart using various methods.

“If we could reduce the risk of repeat attacks, this would represent very significant progress”, says Maria Gomez.

The study has been published in the scientific journal Cardiovascular Research:

"NFAT regulates the expression of AIF-1 and IRT-1: Yin and yang splice variants of neointima formation and atherosclerosis"

For more information, please contact: Maria.Gomez@med.lu.se
Tel: +46 40 391058, +46 702 226216

Megan Grindlay | idw
Further information:
http://www.vr.se
http://cardiovascres.oxfordjournals.org/content/early/2011/11/23/cvr.cvr309.abstract

Further reports about: AIF-1 IRT-1 blood vessels dangerous cell regrowth heart attacks proteins

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>