Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping dangerous cell regrowth reduces risk of further heart attacks

08.12.2011
Like Yin and Yang, the two proteins have opposite effects in the walls of blood vessels.

AIF-1 stimulates undesirable formation of new cells after a vascular injury, and IRT-1 has the opposite effect. It is the latter, IRT-1, that Maria Gomez wants to use to stop a dangerous development in the artery, together with researchers at Lund University Diabetes Centre in Sweden and Temple University in the USA. They have already had success in animal experiments.

“After an arterial injury, the inner layer of cells in the artery begins to regrow. In the long term, this usually causes more harm than good”, says Maria Gomez.

A common cause of arterial injuries is the clearing of blocked arteries often performed on patients who have had a heart attack.

“Initially the artery is opened up, but after a while new cell formation increases the risk of further heart attacks.”

In animal experiments, the research groups have demonstrated the opposite effects of the two proteins. The carotid artery of rats was damaged with balloon dilation, simulating the procedure carried out on heart attack patients.

After two weeks, there was noticeably less new cell formation in the arteries that had more of the protein IRT-1. With AIF-1, the opposite effect was observed.

“The interesting thing is that both proteins are formed from the same gene and we have now found a mechanism to control the balance in the formation of the two. Using a new drug we can thus increase the amount of the ‘good’ protein, IRT-1. It is not an approved drug, but it has been tested on mice and appears to be tolerated well”, says Maria Gomez.

The researchers have also analysed over 150 fatty deposits (‘plaques’) removed from the carotid arteries of patients.

“We saw that the dangerous plaques – those that are unstable, easily rupture, are more inflamed and more often produce symptoms – contain more AIF-1. Those with a higher proportion of the protein IRT-1 are less dangerous”, observes Lisa Berglund, co-author of the published study.

Diabetes patients develop more plaques, and more often dangerous ones, than non-diabetics. Diabetics have a significantly higher risk of suffering a heart attack.

The regrowth of cells in the arteries also leads to negative changes in blood flow. It may even be the case that AIF-1 is involved in the actual formation of plaques in the arteries.

Heart attacks are the most common cause of death in Sweden and many patients have repeated attacks, which are treated by clearing constrictions in the arteries of the heart using various methods.

“If we could reduce the risk of repeat attacks, this would represent very significant progress”, says Maria Gomez.

The study has been published in the scientific journal Cardiovascular Research:

"NFAT regulates the expression of AIF-1 and IRT-1: Yin and yang splice variants of neointima formation and atherosclerosis"

For more information, please contact: Maria.Gomez@med.lu.se
Tel: +46 40 391058, +46 702 226216

Megan Grindlay | idw
Further information:
http://www.vr.se
http://cardiovascres.oxfordjournals.org/content/early/2011/11/23/cvr.cvr309.abstract

Further reports about: AIF-1 IRT-1 blood vessels dangerous cell regrowth heart attacks proteins

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>