Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop and go

06.07.2012
‘Traffic policeman’ protein directs crucial step in cell division

A traffic policeman standing at a busy intersection directing the flow of vehicles may be a rare sight these days, but a similar scene appears to still frequently play out in our cells.

A protein called Lem4 directs a crucial step of cell division by preventing the progress of one molecule while waving another through, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found. The study is published online today in Cell.

For an embryo to grow or a tissue to regenerate, its cells must divide. When one of our cells divides to give rise to two, the membrane that surrounds the cell’s nucleus – the nuclear envelope – has to be broken down and later rebuilt, once the chromosomes have been dragged apart. For this re-assembly to take place, a protein called BAF has to have chemical tags called phosphates removed. Changing a protein’s phosphorylation state – its possession or lack of phosphate tags – can involve regulating the activity of proteins that add phosphate, proteins that remove phosphate, or both. The EMBL scientists discovered a new molecule, Lem4, which acts as a traffic policeman, stopping one protein from adding phosphate tags to BAF and bringing in another protein to remove the existing tags.

“This happens in both human cells and in the worm C. elegans, so it seems to be a strategy which evolved long ago,” says Iain Mattaj, director-general of EMBL, who led the work.

Through a combination of genetics and biochemical studies, the scientists found that, even though the worm version of Lem4 is markedly different from the human version, both perform the same double task at the end of cell division. Mattaj and colleagues suspect that this tactic – having a single molecule that prevents tags being added and simultaneously promotes their removal – could be employed in the many cellular processes that involve phosphate tags, such as the growth and division of cells or transmitting signals into cells from the environment.

It would now be interesting to investigate just what prompts Lem4 to start its double-action at the right moment, they say.

Source Article

Asencio, C., Davidson, I. F., Santarella-Mellwig, R., Ly-Hartig, T.B.N., Mall, M., Wallenfang, M.R., Mattaj, I.W. & Gorjánácz, M. Coordination of Kinase and Phosphatase Activities by Lem4 Enables Nuclear Envelope Reassembly during Mitosis Cell, 6 July 2012.

Article Abstract

Mitosis in metazoa requires nuclear envelope (NE) breakdown and reassembly. Multiple phosphorylation events drive NE disassembly but how dephosphorylation is regulated to enable reassembly is almost entirely unknown. Here, we report that Lem4 is required for the function of both a mitotic kinase and a phosphatase that act on BAF, an essential effector of nuclear assembly. Lem4 is required for dephosphorylation of BAF by inhibiting its mitotic kinase, VRK-1, in vivo and in vitro. In addition, Lem4 interacts with PP2A and is required for it to dephosphorylate BAF during mitotic exit. By coordinating VRK-1 and PP2A mediated signaling on BAF, Lem4 controls postmitotic NE formation in a function conserved from worms to humans.

Press Contact

Sonia Furtado Neves
EMBL Press Officer, Meyerhofstraße 1, 69117 Heidelberg, Germany
Tel: +49 6221 387-8263
E-mail: sonia.furtado@embl.de
Policy regarding use
Press and Picture Releases

EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>