Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stop and go

‘Traffic policeman’ protein directs crucial step in cell division

A traffic policeman standing at a busy intersection directing the flow of vehicles may be a rare sight these days, but a similar scene appears to still frequently play out in our cells.

A protein called Lem4 directs a crucial step of cell division by preventing the progress of one molecule while waving another through, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found. The study is published online today in Cell.

For an embryo to grow or a tissue to regenerate, its cells must divide. When one of our cells divides to give rise to two, the membrane that surrounds the cell’s nucleus – the nuclear envelope – has to be broken down and later rebuilt, once the chromosomes have been dragged apart. For this re-assembly to take place, a protein called BAF has to have chemical tags called phosphates removed. Changing a protein’s phosphorylation state – its possession or lack of phosphate tags – can involve regulating the activity of proteins that add phosphate, proteins that remove phosphate, or both. The EMBL scientists discovered a new molecule, Lem4, which acts as a traffic policeman, stopping one protein from adding phosphate tags to BAF and bringing in another protein to remove the existing tags.

“This happens in both human cells and in the worm C. elegans, so it seems to be a strategy which evolved long ago,” says Iain Mattaj, director-general of EMBL, who led the work.

Through a combination of genetics and biochemical studies, the scientists found that, even though the worm version of Lem4 is markedly different from the human version, both perform the same double task at the end of cell division. Mattaj and colleagues suspect that this tactic – having a single molecule that prevents tags being added and simultaneously promotes their removal – could be employed in the many cellular processes that involve phosphate tags, such as the growth and division of cells or transmitting signals into cells from the environment.

It would now be interesting to investigate just what prompts Lem4 to start its double-action at the right moment, they say.

Source Article

Asencio, C., Davidson, I. F., Santarella-Mellwig, R., Ly-Hartig, T.B.N., Mall, M., Wallenfang, M.R., Mattaj, I.W. & Gorjánácz, M. Coordination of Kinase and Phosphatase Activities by Lem4 Enables Nuclear Envelope Reassembly during Mitosis Cell, 6 July 2012.

Article Abstract

Mitosis in metazoa requires nuclear envelope (NE) breakdown and reassembly. Multiple phosphorylation events drive NE disassembly but how dephosphorylation is regulated to enable reassembly is almost entirely unknown. Here, we report that Lem4 is required for the function of both a mitotic kinase and a phosphatase that act on BAF, an essential effector of nuclear assembly. Lem4 is required for dephosphorylation of BAF by inhibiting its mitotic kinase, VRK-1, in vivo and in vitro. In addition, Lem4 interacts with PP2A and is required for it to dephosphorylate BAF during mitotic exit. By coordinating VRK-1 and PP2A mediated signaling on BAF, Lem4 controls postmitotic NE formation in a function conserved from worms to humans.

Press Contact

Sonia Furtado Neves
EMBL Press Officer, Meyerhofstraße 1, 69117 Heidelberg, Germany
Tel: +49 6221 387-8263
Policy regarding use
Press and Picture Releases

EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves | EMBL Research News
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>