Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Stemness of Cancer Cells

15.12.2010
A close collaboration between researchers at the Salk Institute for Biological Studies and the Institute for Advanced Study found that the tumor suppressor p53, long thought of as the "Guardian of the Genome," may do more than thwart cancer-causing mutations. It may also prevent established cancer cells from sliding toward a more aggressive, stem-like state by serving as a "Guardian against Genome Reprogramming."

The new work, reported by Geoffrey M. Wahl, Ph.D., and Benjamin Spike, Ph.D., at Salk Institute and Arnold J. Levine, Ph.D., and Hideaki Mizuno, Ph.D., at IAS, Princeton, in this week's online edition of the Proceedings of the National Academy of Sciences, revealed striking parallels between the increased reprogramming efficiency of normal adult cells lacking p53, the inherent plasticity and tumorigenicity of stem cells, and the high incidence of p53 mutations in malignant cancers.

"A poorly differentiated appearance, cellular and genetic heterogeneity are well-known hallmarks of many aggressive and deadly cancers," explains Wahl, a professor in the Gene Expression Laboratory at Salk, "and it has recently been suggested that these properties result from the presence of stem-like cancer cells. Our findings indicate that p53 mutations could allow cells within a tumor to turn back time by acquiring a stem cell-like 'program.'"

Cancer cells need to acquire some of the characteristics of stem cells to survive and adapt to ever-changing environments. These include immortality, the ability to self-renew and the capacity to produce progenitors that differentiate into other cell types. "Each tumor represents a diverse collection of cancer cells," says Wahl, "and the question was how best to explain how such heterogeneity arises."

In the past, the cellular diversity of cancers has mostly been attributed to genetic instability, which many years ago Wahl and his team showed to occur when p53 is disabled. As the tumor cell population expands, so goes the prevailing theory, individual cells pick up random mutations, and their molecular identity starts to diverge. By the time the cancer is detected, the millions of cells that make up the tumor have become as different from each other as third cousins twice removed.

There had also been a longstanding notion that fully committed and specialized cells might de-differentiate over the course of tumor initiation and progression, although it was unclear how this might be achieved. Eventually the theory was discarded in favor of the currently fashionable cancer stem cell theory, which holds that cancer stem cells-the cells that propagate a tumor and that could potentially arise from normal stem or early progenitors-are distinct from the bulk of the cancer cells in that they can self-renew as well as produce non-stem cells, just as normal stem cells do.

"Our findings indicate that cancer cells that resemble stem cells need not be part of the original tumor but rather may emerge during later stages of tumor development, facilitated by the loss of p53," says postdoctoral researcher and co-first author Benjamin T. Spike, Ph.D. "The observed tumor heterogeneity is probably a combination of growing genomic instability and epigenetic instability associated with the acquisition of a stem cell-like phenotype."

Wahl and his team first considered the possibility that p53 does more then function as a "genome guardian" when a collaborative study with Juan Carlos Izpisúa Belmonte, Ph.D., also a professor in the Gene Expression Laboratory at the Salk Institute, revealed that this tumor suppressor also presents a barrier to somatic cell reprogramming.

To find out whether p53 inactivation does permit the emergence of tumor cells resembling stem cells, Spike and Mizuno combed through hundreds of archival gene expression profiles of breast and lung tumors, searching for stem cell-like signatures and correlating them to their p53 status.

"We found a close correlation between tumors with confirmed p53 mutations or overt p53 inactivation and gene expression patterns typical of stem cells," Spike explains. "It will influence the way we think about p53 since its loss now seems to have reverberations beyond removing the immediate cell death and proliferation barriers to tumorigenicity."

Wahl hopes that gaining a better understanding of the process that allows tumor cells to revert to a more stem-like state will reveal new targets for therapeutic intervention. "More stem-like tumors appear to be more aggressive, but they still may have residual capacity to differentiate into less aggressive cell types," he says. "If we can tap into this potential, we may be able to force these cells to differentiate to become less dangerous, which is an old idea that we need to seriously reconsider."

The closeness of the collaboration is indicated by the sharing of the first authorship between Spike and Mizuno, who is now at Chugai Pharmaceutical Co. Ltd., in Kamakura, Japan.

The work at Salk was funded by the Breast Cancer Research Foundation, the G. Harold and Leila Y. Mathers Charitable Foundation, the National Cancer Institute and a Ruth L. Kirschstein National Research Service Award.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

The Salk Institute proudly celebrates five decades of scientific excellence in basic research.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>