Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells overcome damage in other cells by exporting mitochondria

16.01.2014
A research team has identified a protein that in-creases the transfer of mitochondria from mesenchymal stem cells to lung cells.

In work published in The EMBO Journal, the researchers reveal that the delivery of mitochondria to human lung cells can rejuvenate damaged cells. The migration of mitochondria from stem cells to epithelial cells also helps to repair tissue damage and inflammation linked to asthma-like symptoms in mice.

“Our results show that the movement of mitochondria from stem cells to recipient cells is regulated by the protein Miro1 and is part of a well-directed process,” remarked Anurag Agrawal, Professor at the CSIR-Institute of Genomics and Integrative Biology in Delhi, India, and one of the lead authors of the study.

“The introduction of mitochondria into damaged cells has beneficial effects on the health of cells and, in the long term, we be-lieve that mesenchymal stem cells could even be engineered to create more effective therapies for lung disease in humans.”

Earlier work revealed that mitochondria can be transferred between cells through tunnel-ing nanotubes, thread-like structures formed from the plasma membranes of cells that bridge between different types of cells. Stem cells can also use tunneling nanotubes to transfer mitochondria to neighboring cells and the number of these nanotubes increases under conditions of stress.

In the study, the protein Miro1 was shown to regulate the transfer of mitochondria from mesenchymal stem cells to epithelial cells. Stem cells that were engineered to have higher amounts of Miro1 were able to transfer mitochondria more efficiently and were therapeutically more effective when tested in mouse models of airway injury and asthma, compared to untreated cells.

“We hope to determine how this pathway might translate into better stem cell therapies for human disease,” added Agrawal.

Miro1 regulates intercellular mitochondrial transport and enhances mesenchymal stem cell rescue efficacy

Tanveer Ahmad, Shravani Mukherjee, Bijay Pattnaik, Manish Kumar, Suchita Singh, Manish Kumar, Rakhshinda Rehman, Brijendra K Tiwari, Kumar Abhiram Jha, Amruta P Barhanpurkar, Mohan R Wani, Soumya Sinha Roy, Ulaganathan Mabalirajan, Balaram Ghosh and Anurag Agrawal

Watch the video: http://emboj.embopress.org/content/early/2014/01/15/embj.201386030#sec-31

Transfer of mitochondria between stem cells via tunneling microtubes.

Read the paper: http://emboj.embopress.org/content/early/2014/01/15/embj.201386030

doi: 10.1002/embj.201386030

Further information on The EMBO Journal is available at www.emboj.embopress.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Karin Dumstrei
Editor, The EMBO Journal
Tel: +49 6221 8891 406
karin.dumstrei@embo.org
About EMBO
EMBO is an organization of more than 1600 leading researchers that promotes excel-lence in the life sciences. The major goals of the organization are to support talented re-searchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and re-search policy by seeking input and feedback from our community and by following close-ly the trends in science in Europe.

Yvonne Kaul | EMBO Communications
Further information:
http://www.embo.org
http://emboj.embopress.org/content/early/2014/01/15/embj.201386030

More articles from Life Sciences:

nachricht Breaking through a double wall with a sledgehammer
29.06.2015 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Lean but sated: Molecular Switch for a Healthy Metabolism discovered
29.06.2015 | Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

Im Focus: Superslippery islands (but then they get stuck)

A simple reversible process that changes friction in the nanoworld

(Nano)islands that slide freely on a sea of copper, but when they become too large (and too dense) they end up getting stuck: that nicely sums up the system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Breaking through a double wall with a sledgehammer

29.06.2015 | Life Sciences

Lean but sated: Molecular Switch for a Healthy Metabolism discovered

29.06.2015 | Life Sciences

Spintronics Advance Brings Wafer-Scale Quantum Devices Closer to Reality

29.06.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>