Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy could offer new hope for defects and injuries to head, mouth

31.07.2012
In the first human study of its kind, researchers found that using stem cells to re-grow craniofacial tissues—mainly bone—proved quicker, more effective and less invasive than traditional bone regeneration treatments.

Researchers from the University of Michigan School of Dentistry and the Michigan Center for Oral Health Research partnered with Ann Arbor-based Aastrom Biosciences Inc. in the clinical trial, which involved 24 patients who required jawbone reconstruction after tooth removal.

Patients either received experimental tissue repair cells or traditional guided bone regeneration therapy. The tissue repair cells, called ixmyelocel-T, are under development at Aastrom, which is a U-M spinout company.

"In patients with jawbone deficiencies who also have missing teeth, it is very difficult to replace the missing teeth so that they look and function naturally," said Darnell Kaigler, principal investigator and assistant professor at the U-M School of Dentistry. "This technology and approach could potentially be used to restore areas of bone loss so that missing teeth can be replaced with dental implants."

William Giannobile, director of the Michigan Center for Oral Health Research and chair of the U-M Department of Periodontics and Oral Medicine, is co-principal investigator on the project.

The treatment is best suited for large defects such as those resulting from trauma, diseases or birth defects, Kaigler said. These defects are very complex because they involve several different tissue types—bone, skin, gum tissue—and are very challenging to treat.

The main advantage to the stem cell therapy is that it uses the patient's own cells to regenerate tissues, rather than introducing man-made, foreign materials, Kaigler said.

The results were promising. At six and 12 weeks following the experimental cell therapy treatment, patients in the study received dental implants. Patients who received tissue repair cells had greater bone density and quicker bone repair than those who received traditional guided bone regeneration therapy.

In addition, the experimental group needed less secondary bone grafting when getting their implants.

The cells used for the therapy were originally extracted from bone marrow taken from the patient's hip. The bone marrow was processed using Aastrom's proprietary system, which allows many different cells to grow, including stem cells. These stem cells were then placed in different areas of the mouth and jaw.

Stem cell therapies are still probably 5-10 years away from being used regularly to treat oral and facial injuries and defects, Kaigler said. The next step is to perform more clinical trials that involve larger craniofacial defects in a larger number of patients.

The study, "Stem cell therapy for craniofacial bone repair: A randomized, controlled clinical trial," appears this month in the journal Cell Transplantation.

Darnell Kaigler:
www.dent.umich.edu/pom/faculty/links/dkbio
William Giannobile:
www.dent.umich.edu/pom/faculty/links/wgbio
Aastrom Biosciences:
www.aastrom.com

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>