Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cell Research Helps to Identify Origins of Schizophrenia

23.01.2013
UB scientists propose first genomic explanation for disease

New University at Buffalo research demonstrates how defects in an important neurological pathway in early development may be responsible for the onset of schizophrenia later in life.


Arrows point to cell nuclei in human embryonic stem cells in which a fibroblast growth factor receptor protein, (FGFR1), targets diverse genes implicated in schizophrenia.

The UB findings, published in Schizophrenia Research (paper at http://bit.ly/Wq1i41), test the hypothesis in a new mouse model of schizophrenia that demonstrates how gestational brain changes cause behavioral problems later in life – just like the human disease.

Partial funding for the research came from New York Stem Cell Science (NYSTEM).

The genomic pathway, called the Integrative Nuclear FGFR 1 Signaling (INFS), is a central intersection point for multiple pathways of as many as 160 different genes believed to be involved in the disorder.

“We believe this is the first model that explains schizophrenia from genes to development to brain structure and finally to behavior,” says lead author Michal Stachowiak, PhD, professor in the Department of Pathology and Anatomical Sciences in the UB School of Medicine and Biomedical Sciences. He also is director of the Stem Cell Engraftment & In Vivo Analysis Facility at the Western New York Stem Cell Culture and Analysis Center at UB.

A key challenge with the disease is that patients with schizophrenia exhibit mutations in different genes, he says.

“How is it possible to have 100 patients with schizophrenia and each one has a different genetic mutation that causes the disorder?” asks Stachowiak. “It’s possible because INFS integrates diverse neurological signals that control the development of embryonic stem cell and neural progenitor cells, and links pathways involving schizophrenia-linked genes.

“INFS functions like the conductor of an orchestra,” explains Stachowiak. “It doesn’t matter which musician is playing the wrong note, it brings down the conductor and the whole orchestra. With INFS, we propose that when there is an alteration or mutation in a single schizophrenia-linked gene, the INFS system that controls development of the whole brain becomes untuned. That’s how schizophrenia develops.”

Using embryonic stem cells, Stachowiak and colleagues at UB and other institutions found that some of the genes implicated in schizophrenia bind the FGFR1 (fibroblast growth factor receptor) protein, which in turn, has a cascading effect on the entire INFS.

“We believe that FGFR1 is the conductor that physically interacts with all genes that affect schizophrenia,” he says. “We think that schizophrenia occurs when there is a malfunction in the transition from stem cell to neuron, particularly with dopamine neurons.”

The researchers tested their hypothesis by creating an FGFR1 mutation in mice, which produced the hallmarks of the human disease: altered brain anatomy, behavioral impacts and overloaded sensory processes.

“By attacking the INFS pathway, we were able to produce schizophrenia in mice,” he says.

He adds that if such a generalized genomic pathway is causing the disease, then it should be possible to treat the disease with a more generalized approach. “We may even be able to devise ways to arrest development of the disease before it presents fully in adolescence or adulthood,” he says.

The UB work adds to existing evidence that nicotinic agonists, often prescribed as smoking cessation drugs, could help improve cognitive function in schizophrenics by acting on the INFS. Schizophrenics smoke at a dramatically higher rate than the general population, long believed to be a form of self-medication.

In addition to NYSTEM, funding for the research was provided by UB and the March of Dimes and Birth Defects.

UB co-authors with Stachowiak are: his graduate students, S. Narla, D. Prokop, C. Syposs, C. Terranova, A. Kucinski and R. Curl; research assistant professors B. Birkaya, PhD, E. K. Stachowiak, PhD, all in the Department of Pathology and Anatomical Sciences; S. Wersinger, PhD, assistant professor, and Y. Yang of the Department of Psychology; A. Parikh, doctoral candidate and E.S. Tzanakakis, PhD, associate professor of the Department of Chemical and Biological Engineering in the School of Engineering and Applied Sciences and the Western New York Stem Cell Culture and Analysis Center at UB.

Other co-authors are I. Klejbor of Gdansk Medical University, M. Bencherif of Targacept Inc. and T. Corso of Lake Erie College of Osteopathic Medicine.

Media Contact Information
Ellen Goldbaum
Senior Editor, Medicine, Public Health
Tel: 716-645-4605
goldbaum@buffalo.edu
Twitter: @egoldbaum

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>