Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cell Research Helps to Identify Origins of Schizophrenia

23.01.2013
UB scientists propose first genomic explanation for disease

New University at Buffalo research demonstrates how defects in an important neurological pathway in early development may be responsible for the onset of schizophrenia later in life.


Arrows point to cell nuclei in human embryonic stem cells in which a fibroblast growth factor receptor protein, (FGFR1), targets diverse genes implicated in schizophrenia.

The UB findings, published in Schizophrenia Research (paper at http://bit.ly/Wq1i41), test the hypothesis in a new mouse model of schizophrenia that demonstrates how gestational brain changes cause behavioral problems later in life – just like the human disease.

Partial funding for the research came from New York Stem Cell Science (NYSTEM).

The genomic pathway, called the Integrative Nuclear FGFR 1 Signaling (INFS), is a central intersection point for multiple pathways of as many as 160 different genes believed to be involved in the disorder.

“We believe this is the first model that explains schizophrenia from genes to development to brain structure and finally to behavior,” says lead author Michal Stachowiak, PhD, professor in the Department of Pathology and Anatomical Sciences in the UB School of Medicine and Biomedical Sciences. He also is director of the Stem Cell Engraftment & In Vivo Analysis Facility at the Western New York Stem Cell Culture and Analysis Center at UB.

A key challenge with the disease is that patients with schizophrenia exhibit mutations in different genes, he says.

“How is it possible to have 100 patients with schizophrenia and each one has a different genetic mutation that causes the disorder?” asks Stachowiak. “It’s possible because INFS integrates diverse neurological signals that control the development of embryonic stem cell and neural progenitor cells, and links pathways involving schizophrenia-linked genes.

“INFS functions like the conductor of an orchestra,” explains Stachowiak. “It doesn’t matter which musician is playing the wrong note, it brings down the conductor and the whole orchestra. With INFS, we propose that when there is an alteration or mutation in a single schizophrenia-linked gene, the INFS system that controls development of the whole brain becomes untuned. That’s how schizophrenia develops.”

Using embryonic stem cells, Stachowiak and colleagues at UB and other institutions found that some of the genes implicated in schizophrenia bind the FGFR1 (fibroblast growth factor receptor) protein, which in turn, has a cascading effect on the entire INFS.

“We believe that FGFR1 is the conductor that physically interacts with all genes that affect schizophrenia,” he says. “We think that schizophrenia occurs when there is a malfunction in the transition from stem cell to neuron, particularly with dopamine neurons.”

The researchers tested their hypothesis by creating an FGFR1 mutation in mice, which produced the hallmarks of the human disease: altered brain anatomy, behavioral impacts and overloaded sensory processes.

“By attacking the INFS pathway, we were able to produce schizophrenia in mice,” he says.

He adds that if such a generalized genomic pathway is causing the disease, then it should be possible to treat the disease with a more generalized approach. “We may even be able to devise ways to arrest development of the disease before it presents fully in adolescence or adulthood,” he says.

The UB work adds to existing evidence that nicotinic agonists, often prescribed as smoking cessation drugs, could help improve cognitive function in schizophrenics by acting on the INFS. Schizophrenics smoke at a dramatically higher rate than the general population, long believed to be a form of self-medication.

In addition to NYSTEM, funding for the research was provided by UB and the March of Dimes and Birth Defects.

UB co-authors with Stachowiak are: his graduate students, S. Narla, D. Prokop, C. Syposs, C. Terranova, A. Kucinski and R. Curl; research assistant professors B. Birkaya, PhD, E. K. Stachowiak, PhD, all in the Department of Pathology and Anatomical Sciences; S. Wersinger, PhD, assistant professor, and Y. Yang of the Department of Psychology; A. Parikh, doctoral candidate and E.S. Tzanakakis, PhD, associate professor of the Department of Chemical and Biological Engineering in the School of Engineering and Applied Sciences and the Western New York Stem Cell Culture and Analysis Center at UB.

Other co-authors are I. Klejbor of Gdansk Medical University, M. Bencherif of Targacept Inc. and T. Corso of Lake Erie College of Osteopathic Medicine.

Media Contact Information
Ellen Goldbaum
Senior Editor, Medicine, Public Health
Tel: 716-645-4605
goldbaum@buffalo.edu
Twitter: @egoldbaum

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>