Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell finding could advance immunotherapy for lung cancer

14.11.2012
A University of Cincinnati (UC) Cancer Institute lung cancer research team reports that lung cancer stem cells can be isolated—and then grown—in a preclinical model, offering a new avenue for investigating immunotherapy treatment options that specifically target stem cells.

John C. Morris, MD, and his colleagues report their findings in the Nov. 13, 2012, issue of PLOS One, a peer-reviewed online publication that features original research from all disciplines within science and medicine.

Stem cells are unique cells that can divide and differentiate into specialized cells types—for example cardiac muscle or liver tissue. These cells also have the ability to self-renew and produce more stem cells.

"Increasing evidence supports the idea that cancerous tumors have a population of stem cells, also called cancer-initiating cells, that continually regenerate and fuel cancer growth," explains Morris, senior author of the study and professor at the UC College of Medicine. "These cancer stem cells may also have the highest potential to spread to other organs."

Current models used to study cancer stem cells provide limited information on the interaction between cancer stem cells with the immune system, making the study of new therapies that utilize the body's immune system to fight off cancer virtually impossible.

In this study, the UC team set out to find a viable, consistent way to isolate lung cancer stem cells that could be used in a mouse model with full immune system function. The team was able to achieve this using a functional laboratory test known as "tumorsphere" assay.

The test—which shows how cells grow in culture—allowed them to enrich for cancer stem cells.

"Studying these unique cells could greatly improve our understanding of lung cancer's origins and lead to the novel therapeutics targeting these cells and help to more effectively eradicate this disease," adds Morris. "Immunotherapy is the future of cancer treatment. We are hopeful that this new method will accelerate our investigation of immunotherapies to specifically target cancer stem cells."

The team is working to characterize how cancer stem cells escape the body's immune system in order to develop more effective therapies that target stem cells.

"One of the hypotheses behind why cancer therapies fail is that the drug only kills cells deemed to be 'bad' (because of certain molecular characteristics), but leaves behind stem cells to repopulate the tumor," adds Morris. "Stem cells are not frequently dividing, so they are much less sensitive to existing chemotherapies used to eliminate cells deemed abnormal."

UC study collaborators in this UC-funded study include hematology oncology postdoctoral fellow Brian Morrison, PhD, and Jason Steel, PhD, a lung cancer researcher and assistant professor of research at the UC College of Medicine.

The University of Cincinnati Cancer Institute is one of four UC and UC Health collaborative centers of excellence for research, patient care and education. The UC Cancer Institute and Cincinnati Children's Hospital Medical Center Cancer and Blood Diseases Institute together form the Cincinnati Cancer Center, a joint cancer initiative aimed at advancing cancer care faster through innovative research.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>