Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stealth effect of nanocarriers for drug delivery vehicles conferred more efficiently

16.02.2016

Scientists of the University Medical Center of the Johannes Gutenberg University Mainz and of the Max Planck Institute for Polymer Research (MPI-P) decipher stealth effect of nanocarriers evading clearance by the immune system.

By using drug delivery vehicles, so-called nanocarriers, pharmaceuticals reach the diseased area in the body. There they accelerate the healing process. But in order to prevent them from getting ingested by phagocytes, the surfaces of the nanocarriers are typically coated with the biocompatible synthetic polymer poly(ethylene glycol) (PEG).


Nanocarriers (yellow) are coated with a complex multitude of proteins before they interact with cell membranes and are adhered.

© MPI-P

Scientists at the Mainz University Medical Center and the MPI-P have now identified that specific proteins need to adhere to the PEG and that the polymer recruits them from the blood. Based on this discovery, published in the February issue of Nature Nanotechnology, nanocarriers as drug delivery vehicles can be protected from the immune system’s macrophages more effectively.

The researchers have also been able to apply their findings to other polymers, so-called polyphosphates. Contrary to PEG, these are fully biodegradable and therefore potential candidates for drug carriers in the long-term treatment of chronic diseases.

Polymers recruit specific proteins from the blood for the stealth effect

The ability of PEG to extend the blood circulation periods of nanocarriers and other substances is already known in medicine. However, it has been explained by the fact that PEG causes a reduced protein adsorption on nanocarrier surfaces. The work of Dr. Frederik Wurm and Prof. Dr. Katharina Landfester from the MPI-P as well as of Univ.-Prof. Dr. Volker Mailänder form the Mainz University Medical Center brings about a paradigm shift in this kind of surface modification:

Together with their colleagues, the scientists have shown that it is not a reduced uptake of proteins, but rather a specific adsorption of certain proteins from the blood plasma which is responsible for the stealth effect. Consequently, it is not PEG, but the adsorption of, first and foremost, apolipoprotein J, also named clusterin, that cloaks the nanocarriers. Through the selective adsorption of clusterin the camouflaging of the nanocarriers is made possible so that they can reach their respective destinations in the body.

The physicians and life science researchers altered different nanocarriers and conducted comparative studies with adhering proteins. “Using high-resolution mass spectrometry, we were able to analyze precisely the complex mixture of the blood plasma, the proteins that adhere to the nanocarriers and their components,” Mailänder explains.

“Thanks to these findings, we could also establish a new polymer class as an alternative to PEG: polyphosphate is degradable, while the currently used PEG may accumulate in the body and cause intolerances when taken over a period of several years,” Wurm points out.

“This insight also provides the possibility to dispense with artificial materials completely using naturally occurring proteins for the stealth effect.” Landfester adds: “Mainz provides a unique location for such a research project as it combines polymeric synthesis, colloid chemistry and biomedicine providing an ideal starting point.” “Nanocarriers play an important role in the therapeutical treatment. The new findings of Dr. Mailänder and Dr. Wurm are milestones in this field”, says the Chief Scientific Officer of the Mainz University Medical Center.

Agents reach their destination efficiently

These results will significantly affect the development of new drugs and the treatment of diseased tissues, such as tumors. As an example, the total dose of a drug can be reduced while simultaneously prolonging its blood half-life. This is vital for therapies with rich side effects, as in the chemotherapeutic tumor therapy.

About the project:
The project is funded by the Collaborative Research Center SFB 1066 “Nanodimensional polymer therapeutics for tumor therapy” of the German Research Foundation (DFG) and by the Research Center for Immunotherapy (FZI) of the Johannes Gutenberg University Mainz as well as by the “BiomaTiCS – Biomaterials, Tissues and Cells in Science”.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/stealth_effect_of_nanocarriers

Verena Hochrein | Max-Planck-Institut für Polymerforschung

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>