Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists pinpoint key proteins in blood stem cell replication

10.10.2008
A family of cancer-fighting molecules helps blood stem cells in mice decide when and how to divide, say researchers at the Stanford University School of Medicine.

Blocking the molecules' function spurs the normally resting cells to begin proliferating strangely - making too much of one kind of cell and not enough of another. Many types of human blood cancers involve a similar disruption in the expression of that same family of molecules.

The blood stem cells' misguided enthusiasm also inhibits their ability to successfully repopulate the immune system of a recipient animal after a bone marrow transplant - a common leukemia treatment.

The discovery is the first to directly link the notorious members of the retinoblastoma family of proteins to the cellular production factories responsible for churning out all the blood and immune cells in the body. "This is an important step in understanding the initiation of human cancer at a cellular level," said Patrick Viatour, PhD, a postdoctoral scholar who performed the research in the laboratory of Julien Sage, PhD.

Sage, assistant professor of pediatrics and of genetics, recently received a SEED grant from the California Institute of Regenerative Medicine to investigate how the retinoblastoma, or Rb, proteins affect human embryonic stem cells. Viatour is the first author of the research, which will be published in the Oct. 9 issue of Cell Stem Cell.

"These studies, and additional experiments from our lab in other tissues and organs, indicate that Rb proteins play a critical role in suppressing tumors originating in adult stem cells populations," said Sage, who is also a member of the Stanford Cancer Center.

The first retinoblastoma protein, pRb, was identified through studies of retinal cancer arising in children in whom the protein is missing or mutated. Since that time, Rb proteins have been shown to be involved in preventing many different types of human cancers. Further study showed that pRb stops a cell from dividing before it has appropriately duplicated and segregated its genetic material - coordinating the complex series of events like a traffic light at a busy intersection.

The protein doesn't work alone, however. Two other family members, p107 and p130, also help carry out the important duties. Their ability to fill in for one another makes it difficult to parse out exactly what the proteins are doing at a molecular level. Unfortunately, laboratory animals missing just one or two family members die soon after birth.

Viatour and Sage devised a way to inhibit, or knock out, the function of all three proteins in adult mice. They genetically engineered animals in which the p107 gene is deleted and the pRb and p130 genes are flanked by pieces of DNA that are recognized and cleaved by a specialized protein called the Cre recombinase. When expressed in blood stem cells, the recombinase snips out the Rb and p130 genes, leaving these stem cells and their progeny - that is, the entire blood system-without any functional Rb family members.

The researchers found that blood, or hematopoetic, stem cells in the mice, which usually hang around quietly waiting to be called into action, began actively proliferating when Rb family members were missing. And while unmodified blood stem cells give rise to two main groups of cells - myeloid and lymphoid - the cells missing the Rb family strongly favored the myeloid lineage.

"The differentiation of these hematopoetic stem cells is clearly defective," said Viatour, who also collaborated with bioinformatician and pediatrician Atul Butte, MD, PhD, and many other Stanford researchers on the work. Butte, an assistant professor of medicine and pediatrics, helped the researchers investigate the gene expression profiles of the blood stem cells. "We found that key myeloid genes were upregulated in the cells, and that lymphoid-associated genes were downregulated," said Viatour. In contrast, the ability of the stem cells to make more of themselves seems unimpaired.

Finally, in an experiment mimicking human bone marrow transplantation, hematopoetic stem cells from the mice missing the Rb family members were no longer able to repopulate the immune systems of animals that had received a lethal dose of radiation.

"It's been known that resting, or quiescent, stem cells are much more likely to be successful candidates for transplantation in both humans and mice than are actively dividing cells," said Viatour. "We now have a good model for understanding why that is."

Viatour and his collaborators plan to continue investigating how the Rb family members affect hematopoetic stem cells. One challenge will be to develop an organ-specific way to knock out Rb family function. They'd also like to find out why differentiated myeloid cells don't also proliferate inappropriately, since they too are missing Rb family members.

Krista Conger | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>