Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers find a quicker, cheaper way to sort isotopes

01.07.2009
Isotopes, the atomic clues used to solve crimes, date ancient artifacts and identify chemicals

Whether it's the summer grass that tickles your feet or the red Bordeaux smacking on your palette, nearly every part of the world around you carries special chemical markers.

These markers, called isotopes, can tell scientists where the molecules that compose a substance are from, where they traveled, and what happened to them along the way. But doing these analyses has been complex and costly. Now, Stanford chemists have developed a new method to make isotopic analysis easier and less expensive.

"It's all done with smoke and mirrors," said chemist Richard Zare, giving a very literal description of the new method. The device he and his collaborators have created burns chemical samples into a gas, which then flows through a laser beam that is bouncing back and forth off a set of mirrors inside a special container.

The atoms of a particular element all have the same number of protons in their core, but may have differing numbers of neutrons. Carbon, for example, has six protons, but the number of neutrons in carbon atoms can vary from six to seven or eight. Each variation is an isotope of carbon.

Zare had the idea that it could be possible to distinguish different isotopes by the colors of light from the laser that they absorb when the original molecules are converted to smaller molecules through combustion.

"Think of them as being balls of different color," said Zare the Marguerite Blake Wilbur Professor in Natural Science and chair of the chemistry department. The tool can calculate the ratio of isotopes in a sample by simply "counting the colors and comparing them." This principle also makes the instrument more versatile than current mass spectrometers because Zare's device can analyze isotopes of different elements at the same time without being re-calibrated..

The equipment needed for the new method is smaller, cheaper, lighter and more portable than previous methods, and is easier to use. It has the potential to bring the power of isotopic analysis within easy reach of a host of researchers who have not had access to the expensive equipment that has been needed, Zare said. He and his collaborators report on their method in a paper scheduled to be published Monday, June 29, in the online early edition of the Proceedings of the National Academy of Sciences.

Isotopic analysis is used in a wide range of research, including geochemistry, medicine, and climatology. Until now, the analysis has been done using an isotope ratio mass spectrometer, which works by giving individual molecules an electric charge, then using a magnet to separate the isotopes by their mass—the more neutrons, the more mass. One machine can cost as much as a million dollars. In addition to being expensive and large, mass spectrometers now in use require specially trained technicians to operate them.

Zare's device, which employs what is called cavity ring-down spectroscopy, has potential applications in fields as varied as medicine, geology and winemaking, he said. "Some people are willing to pay a lot of money for wine," Zare said. "You allow me to measure the isotopes, I'll tell you whether you're paying your money for the real thing or not."

Because an element's isotopes are more plentiful in certain places than in others, the ratios of different isotopes within a larger mixture act like travel diaries – they can tell you the history of a mixture, whether it's from a different country, a particular part of the human body, or a previous time period. Determining the history of a mixture by measuring the ratios of its isotopes is known as isotopic analysis.

To illustrate, Zare explained that certain plants, such as corn, contain more carbon-13 than other plants. Because Americans tend to eat more corn than Europeans, isotopic analysis would detect more carbon-13 in the breath exhaled by an American than in the breath exhaled by a European, Zare said.

Doctors and pharmacologists can use isotopic analysis to measure the targeting precision of a specific drug by testing samples of urine and breath to see if the right organs have properly metabolized it. Also, climatologists can learn more about the ancient earth by studying carbon dioxide locked within cores of ice, Zare said.

Zare and his students worked together with researchers from Picarro, Inc., a start-up company he helped found, to create a prototype. They have successfully tested its performance by measuring carbon isotopes in different organic compounds such as methane, ethane, and propane. The bulky magnets that are the most expensive components of an isotope mass spectrometer are unnecessary in Zare's device, cutting costs while achieving an acceptable level of performance, according to Zare's team. Another advantage: the device can be used with minimal training.

Existing isotope ratio mass spectrometers can weigh as much as 1500 pounds and occupy the space of a large freezer case, such as those found an ice cream shop

Once the prototype is fully developed and commercialized, "It'll fit into the backseat of a car," Zare said. This portability can take isotopic analysis directly into the field, whether it's a doctor's office or a vineyard.

However, the team does see room for improvement.

The instrument's isotope ratio measurements are currently accurate within one to three parts per thousand, which is sufficient enough for the team to make a case for an alternative to isotope ratio mass spectrometry. However, this is still 10 to 30 times less accurate than isotope ratio mass spectrometers. The team emphasizes that their current results are preliminary and are only used to demonstrate the viability of their technique.

"My goal is to become better than and actually replace isotope ratio mass spectrometry," Zare said. He sees this as a possibility within the next 5 to 10 years.

Zare's co-authors on the paper include Stanford chemistry graduate student Douglas Kuramoto and Christa Haase, an undergraduate in chemistry at ETH, the Swiss Federal Institute of Technology, in Zurich, Switzerland, who worked in Zare's lab last summer. A grant from Picarro, Inc., a private gas analyzer manufacturer that Zare serves as a technical advisor and of which he is a founding member, supported the development of the current prototype. Other co-authors of the paper are Sze Tan, Eric Crosson, and Nabil Saad, researchers at Picarro, Inc.

Dan Stober | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>