Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How spring-loaded filaree seeds self launch

Mechanism of spring-loaded seed launch discovered

Even by invading plants' standards, the filaree, or common stork's bill, has been remarkably successful. Introduced into North America in the eighteenth century, it is now endemic in south-western states such as California, and the plant's intriguing seed dispersal mechanism seems to lie at the root of their success.

Having launched as far as possible from the mother plant, the seed drills itself into the ground by repeatedly curling and unwinding a strap-like structure, known as an awn, to give it the best chance to germinate. But how do they self-drill? Having watched the seeds bore themselves into the ground in California, research associate Scott Hotton took them back to Jacques Dumais' Harvard laboratory to take a closer look and when Dumais set his introduction to botany class the challenge of making a time-lapse movie, Dennis Evangelista jumped at the opportunity to film the seed's drilling action.

Evangelista, Hotton and Dumais publish their discovery that filaree seeds are launched with a spring mechanism that also drills the seeds into the ground in The Journal of Experimental Biology at

Setting up a camera in his kitchen, Evangelista wet the dry seeds and filmed them as they uncurled and then rewound when they dried. Evangelista explains that when humidity is low the awn dries, curls and drills the seed into the soil. When the humidity rises the awn uncurls, but backward facing hairs on the awn force the seed to move in one direction so that it continues drilling into the ground even when it uncurls. Plotting the tip's trajectory as it wound round, Evangelista realised that the awn behaved like a beam bending into a stretched logarithmic spiral. He could use engineering physics to calculate the amount of energy stored in the awn as it ripened and dried within the fruit and use it to explain how the seeds launch themselves. 'By knowing how much energy is in the dry awn when it is held straight in the seed head I can estimate the range that it goes,' says Evangelista; but first he needed to find out just how far the seeds could fly.

Setting up a high speed camera in Mimi Koehl's Berkeley laboratory and filming seed heads – formed from clusters of five awns – Evangelista captured the instant when an awn finally tore loose and the speed as it catapulted free, launching the seed up to 0.5m from the plant. But how well would Evangelista's energy storage model hold up when he used it to calculate how far the seed could be launched?

Calculating the amount of energy that was released as the dry awn curled and broke free of the seed head, Evangelista then subtracted the amount of energy required to tear the awn away and the energy lost to wind resistance as the seed tumbled through the air, before calculating the distance that the seed could be flung. His calculations matched the distance that the filmed seed had flown. So filaree seeds disperse by using energy stored in the dry awns, which act as springs to fling the seeds by up to 0.5m.

Having discovered how filaree seeds are so successful at propagating, Evangelista and Dumais are now keen to find out how other members of the geranium family disperse their seeds. Evangelista explains that all geraniums are thought to use variations of the awn catapult mechanism for seed dispersal and propagation and he is keen to find out how changes in the awn's material properties affect seed dispersal in other members of the geranium family.


REFERENCE: Evangelista, D., Hotton, S. and Dumais, J. (2011). The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214, 521-529.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT

Kathryn Knight | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>