Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Split decision: Stem cell signal linked with cancer growth

03.02.2014
Researchers at the University of California, San Diego School of Medicine have identified a protein critical to hematopoietic stem cell function and blood formation. The finding has potential as a new target for treating leukemia because cancer stem cells rely upon the same protein to regulate and sustain their growth.

Hematopoietic stem cells give rise to all other blood cells. Writing in the February 2, 2014 advance online issue of Nature Genetics, principal investigator Tannishtha Reya, PhD, professor in the Department of Pharmacology, and colleagues found that a protein called Lis1 fundamentally regulates asymmetric division of hematopoietic stem cells, assuring that the stem cells correctly differentiate to provide an adequate, sustained supply of new blood cells.


This is a confocal micrograph of a human melanoma cell undergoing division or mitosis. The resulting daughter cells are temporarily linked by a bridge of remaining cytoplasm. Green staining labels the endoplasmic reticulum; red colors the mitochondria. Blue indicates the chromosomes.

Credit: Wellcome Images

Asymmetric division occurs when a stem cell divides into two daughter cells of unequal inheritance: One daughter differentiates into a permanently specialized cell type while the other remains undifferentiated and capable of further divisions.

"This process is very important for the proper generation of all the cells needed for the development and function of many normal tissues," said Reya. When cells divide, Lis1 controls orientation of the mitotic spindle, an apparatus of subcellular fibers that segregates chromosomes during cell division.

"During division, the spindle is attached to a particular point on the cell membrane, which also determines the axis along which the cell will divide," Reya said. "Because proteins are not evenly distributed throughout the cell, the axis of division, in turn, determines the types and amounts of proteins that get distributed to each daughter cell. By analogy, imagine the difference between cutting the Earth along the equator versus halving it longitudinally. In each case, the countries that wind up in the two halves are different."

When researchers deleted Lis1 from mouse hematopoietic stem cells, differentiation was radically altered. Asymmetric division increased and accelerated differentiation, resulting in an oversupply of specialized cells and an ever-diminishing reserve of undifferentiated stem cells, which eventually resulted in a bloodless mouse.

"What we found was that a large part of the defect in blood formation was due to a failure of stem cells to expand," said Reya. "Instead of undergoing symmetric divisions to generate two stem cell daughters, they predominantly underwent asymmetric division to generate more specialized cells. As a result, the mice were unable to generate enough stem cells to sustain blood cell production."

The scientists next looked at how cancer stem cells in mice behaved when the Lis1 signaling pathway was blocked, discovering that they too lost the ability to renew and propagate. "In this sense, the effect Lis1 has on leukemic self-renewal parallels its role in normal stem cell self-renewal," Reya said.

Reya said the findings shed new light on the fundamental regulators of cell growth both in normal development and in cancer.

"Our work shows that elimination of Lis1 potently inhibits cancer growth, and identifies Lis1 and other regulators of protein inheritance as a new class of molecules that could be targeted in cancer therapy."

In the long term, Reya noted, it remains to be determined whether inhibiting Lis1 in cancer cells would produce unacceptable consequences in normal cells as well. "A number of commonly used hemotherapy agents target the machinery that controls cell division. Although these agents can be toxic, their effects on cancer cells are much more potent than their effects on normal cells, and so they continue to be used. Agents that target Lis1 might be more specific and less toxic, which would give them significant clinical value."

Co-authors are Bryan Zimdahl, UCSD Department of Pharmacology, Sanford Consortium for Regenerative Medicine and Duke University Medical Center; Takahiro Ito, Jeevisha Bajaj, Takaaki Konuma, Joi Weeks, Claire S. Koechlein, Hyog Young Kwon and Omead Arami, UCSD Department of Pharmacology and Sanford Consortium for Regenerative Medicine; David Rizzieri, Duke University Medical Center; H. Elizabeth Broome, UC San Diego Moores Cancer Center; Charles Chuah, Singapore General Hospital and Duke-National University of Singapore Graduate Medical School; Vivian G. Oehler, Fred Hutchinson Cancer Research Center; Roman Sasik and Gary Hardiman, UCSD Department of Medicine.

Funding support came, in part, from the National Institutes of Health, (grants T32 GM007184-33 and T32 GM007752), the UC San Diego Moores Cancer Center, the California Institute for Regenerative Medicine, the Japanese Society for the Promotion of Science and the Leukemia and Lymphoma Society.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>