Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spitting cobras track first, predict later

14.05.2010
Most venomous snakes are legendary for their lethal bites, but not all. Some spit defensively.

Bruce Young, from the University of Massachusetts Lowell, explains that some cobras defend themselves by spraying debilitating venom into the eyes of an aggressor. Getting the chance to work with spitting cobras in South Africa, Young took the opportunity to record the venom spray tracks aimed at his eyes.

Protected by a sheet of Perspex, Young caught the trails of venom and two things struck him: how accurately the snakes aimed and that each track was unique. This puzzled Young. For a start the cobra's fangs are fixed and they can't change the size of the venom orifice, 'so basic fluid dynamics would lead you to think that the pattern of the fluid should be fixed,' explains Young.

But Young had also noticed that the snakes 'wiggled' their heads just before letting fly. 'The question became how do we reconcile those two things,' says Young, who publishes his discovery that the snakes initially track their victim's movement and then switch to predicting where the victim is going to be 200ms in the future in the Journal of Experimental Biology (http://jeb.biologists.org) on 14 May 2010.

Young remembers that Guido Westhoff had also noticed the spitting cobra's 'head wiggle', so he and his research assistant, Melissa Boetig, travelled to Horst Bleckmann's lab in the University of Bonn, Germany, to find out how spitting cobras fine-tune their venom spray. The team had to find out how a target provokes a cobra to spit, and Young was the man for that job, 'I just put on the goggles and the cobras start spitting all over,' laughs Young.

Wearing a visor fitted with accelerometers to track his own head movements while Boetig and Westhoff filmed the cobra's movements at 500 frames/s, Young stood in front of the animals and taunted them by weaving his head about. Over a period of 6 weeks, the team filmed over 100 spits before trying to discover why Young was so successful at provoking the snakes.

Analysing Young's movements, only one thing stood out; 200 ms before the snake spat, Young suddenly jerked his head. The team realised that Young's head jerk was the spitting trigger. They reasoned that the snake must be tracking Young's movements right up to the instant that he jerked his head and that it took a further 200 ms for the snake to react and fire off the venom.

But Young was still moving after triggering the snake into spitting and the snake can't steer the stream of venom, so how was the cobra able to successfully hit Young's eyes if it was aiming at a point where the target had been 200 ms previously? Realigning the data to the instant when Young jerked his head, the team compared all of the snakes' head movements and noticed that the cobras were all moving in a similar way. They accelerated their heads in the same direction that Young's eyes were moving. 'Not only does it speed up but it predicts where I am going to be and then it patterns its venom in that area,' explains Young.

So spitting cobras defend themselves by initially tracking an aggressor's movements. However, at the instant that an attacker triggers the cobra into spitting, the reptile switches to predicting where the attacker's eyes will be 200 ms in the future and aims there to be sure that it hits its target.

REFERENCE: Westhoff, G., Boetig, M., Bleckmann, H. and Young, B. A. (2010). Target tracking during venom 'spitting' by cobras. J. Exp. Biol. 213, 1797-1802.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

Further reports about: Snakes cobras head movement lethal bites spitting cobras

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>