Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spitting cobras track first, predict later

14.05.2010
Most venomous snakes are legendary for their lethal bites, but not all. Some spit defensively.

Bruce Young, from the University of Massachusetts Lowell, explains that some cobras defend themselves by spraying debilitating venom into the eyes of an aggressor. Getting the chance to work with spitting cobras in South Africa, Young took the opportunity to record the venom spray tracks aimed at his eyes.

Protected by a sheet of Perspex, Young caught the trails of venom and two things struck him: how accurately the snakes aimed and that each track was unique. This puzzled Young. For a start the cobra's fangs are fixed and they can't change the size of the venom orifice, 'so basic fluid dynamics would lead you to think that the pattern of the fluid should be fixed,' explains Young.

But Young had also noticed that the snakes 'wiggled' their heads just before letting fly. 'The question became how do we reconcile those two things,' says Young, who publishes his discovery that the snakes initially track their victim's movement and then switch to predicting where the victim is going to be 200ms in the future in the Journal of Experimental Biology (http://jeb.biologists.org) on 14 May 2010.

Young remembers that Guido Westhoff had also noticed the spitting cobra's 'head wiggle', so he and his research assistant, Melissa Boetig, travelled to Horst Bleckmann's lab in the University of Bonn, Germany, to find out how spitting cobras fine-tune their venom spray. The team had to find out how a target provokes a cobra to spit, and Young was the man for that job, 'I just put on the goggles and the cobras start spitting all over,' laughs Young.

Wearing a visor fitted with accelerometers to track his own head movements while Boetig and Westhoff filmed the cobra's movements at 500 frames/s, Young stood in front of the animals and taunted them by weaving his head about. Over a period of 6 weeks, the team filmed over 100 spits before trying to discover why Young was so successful at provoking the snakes.

Analysing Young's movements, only one thing stood out; 200 ms before the snake spat, Young suddenly jerked his head. The team realised that Young's head jerk was the spitting trigger. They reasoned that the snake must be tracking Young's movements right up to the instant that he jerked his head and that it took a further 200 ms for the snake to react and fire off the venom.

But Young was still moving after triggering the snake into spitting and the snake can't steer the stream of venom, so how was the cobra able to successfully hit Young's eyes if it was aiming at a point where the target had been 200 ms previously? Realigning the data to the instant when Young jerked his head, the team compared all of the snakes' head movements and noticed that the cobras were all moving in a similar way. They accelerated their heads in the same direction that Young's eyes were moving. 'Not only does it speed up but it predicts where I am going to be and then it patterns its venom in that area,' explains Young.

So spitting cobras defend themselves by initially tracking an aggressor's movements. However, at the instant that an attacker triggers the cobra into spitting, the reptile switches to predicting where the attacker's eyes will be 200 ms in the future and aims there to be sure that it hits its target.

REFERENCE: Westhoff, G., Boetig, M., Bleckmann, H. and Young, B. A. (2010). Target tracking during venom 'spitting' by cobras. J. Exp. Biol. 213, 1797-1802.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

Further reports about: Snakes cobras head movement lethal bites spitting cobras

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>