Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sperm shaker set to improve IVF success rates

19.01.2009
Scientists have developed a ground-breaking method for testing the quality of a sperm before it is used in IVF and increase the chances of conception.

Researchers at the University of Edinburgh, funded by the EPSRC (Engineering and Physical Sciences Research Council), have created a way of chemically ‘fingerprinting’ individual sperm to give an indication of quality.

Scientists can then consider whether the sperm is healthy enough to be used to fertilise an egg as part of an IVF treatment.

The sperm are captured in two highly focussed beams of laser light. Trapped in what are essentially ‘optical tweezers’, an individual sperm’s DNA properties are identified by the pattern of the vibrations they emit in a process known as Raman spectroscopy. This is the first time this process has been used to evaluate DNA damage in sperm.

Dr Alistair Elfick, lead scientist on the project, said: “In natural conception the fittest and healthiest sperm are positively selected by the arduous journey they make to the egg. What our technology does is to replace natural selection with a DNA based ‘quality score’. But this is not about designer babies. We can only tell if the sperm is strong and healthy not if it will produce a baby with blue eyes.”

In the past quality tests of sperm have mostly been carried out on the basis of shape and activity. While these do give some indication of health of the sperm they do not give its DNA status.

There are established tests for sperm DNA quality but they work by cutting the cells in half and tagging them with fluorescent dye – a process that kills the sperm and renders it useless. This new process does not destroy the sperm,

so if it is found to have good DNA quality, it can still be used in IVF treatment.

Conception rates in both IVF treatment and intercourse are at around one in four. By selecting the best quality sperm it is hoped this new process could both increase a couple’s chances of conception and give the child the best potential start in life.

The research is currently in a pre-clinical phase, and if successful could be available to patients in the next five to ten years.

Lawrie Jones | alfa
Further information:
http://www.epsrc.ac.uk/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>