Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speedier diagnosis of diseases such as cancer likely thanks to new DNA analysis technique

05.08.2014

McGill researchers develop breakthrough technique for genomic analysis of long DNA molecules

Researchers from McGill University and the Génome Québec Innovation Centre have achieved a technical breakthrough that should result in speedier diagnosis of cancer and various pre-natal conditions.

Long Strands of DNA Stretched for Analysis

Long strands of DNA can now be analyzed thanks to a new tool developed by McGill University and Génome Québec. This technical breakthrough will potentially result in speedier diagnosis of cancer and various pre-natal conditions.

Credit: Daniel Berard

The key discovery, which is described online this week in the Proceedings of the National Academy of Sciences (PNAS), lies in a new tool developed by Professors Sabrina Leslie and Walter Reisner of McGill's Physics Department and their collaborator Dr. Rob Sladek of the Génome Québec Innovation Centre.

It allows researchers to load long strands of DNA into a tunable nanoscale imaging chamber in ways that maintain their structural identity and under conditions that are similar to those found in the human body.

This newly developed "Convex Lens-Induced Confinement" (CLIC) will permit researchers to rapidly map large genomes while at the same time clearly identifying specific gene sequences from single cells with single-molecule resolution, a process that is critical to diagnosing diseases like cancer.

CLIC, the new tool, can sit on top of a standard inverted fluorescence microscope used in a university lab. The innovative aspect of CLIC lies in the fact that it allows strands of DNA to be loaded into the imaging chamber from above, a process which allows the strands of DNA to maintain their integrity.

Existing tools used for genomic analysis rely on side-loading DNA under pressure into nanochannels in the imaging chamber, a practice that breaks the DNA molecules into small pieces, making it a challenge to reconstruct the genome.

"It's like squeezing many soft spaghetti noodles into long narrow tubes without breaking them," explains Prof. Leslie as she describes what it is like to use CLIC. "Once these long strands of DNA are gently squeezed down into nanochannels from a nanoscale bath above, they become effectively rigid which means that we can map positions along uniformly stretched strands of DNA, while holding them still. This means diagnostics can be performed quickly, one cell at a time, which is critical for diagnosing many pre-natal conditions and the onset of cancer."

"Current practices of genomic analysis typically require tens of thousands of cells worth of genomic material to obtain the information we need, but this new approach works with single cells," says Dr. Rob Sladek of the Génome Québec Innovation Centre. "CLIC will allow researchers to avoid having to spend time stitching together maps of entire genomes as we do under current techniques, and promises to make genomic analysis a much simpler and more efficient process."

"Nanoscale physics has so much to offer biomedicine and diagnostics," adds Prof. Leslie. "CLIC brings the nanoscale regime to the bench top, and genomics is just the beginning".

###

To read the full article "Convex Lens-Induced Nanoscale Templating" by Sabrina R. Leslie et al in PNAS: http://www.pnas.org/cgi/doi/10.1073/pnas.1321089111

To contact the researchers directly: sabrina.leslie@mcgill.ca

Katherine Gombay | Eurek Alert!
Further information:
http://www.mcgill.ca

Further reports about: DNA McGill PNAS chamber diagnosis diagnosis of cancer diseases genomes genomic nanochannels nanoscale strands

More articles from Life Sciences:

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Perfect imperfection
03.05.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>