Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When it comes to speaking out, cells wait their turn

06.09.2011
Revealing how cells communicate, Tel Aviv University research could lead to new cancer drugs and more

Cell communication is essential for the development of any organism. Scientists know that cells have the power to "talk" to one another, sending signals through their membranes in order to "discuss" what kind of cell they will ultimately become — whether a neuron or a hair, bone, or muscle. And because cells continuously multiply, it's easy to imagine a cacophony of communication.

But according to Dr. David Sprinzak, a new faculty recruit of Tel Aviv University's Department of Biochemistry and Molecular Biology at the George S. Wise Faculty of Life Sciences, cells know when to transmit signals — and they know when it's time to shut up and let other cells do the talking. In collaboration with a team of researchers at the California Institute of Technology, Dr. Sprinzak has discovered the mechanism that allows cells to switch from sender to receiver mode or vice versa, inhibiting their own signals while allowing them to receive information from other cells — controlling their development like a well-run business meeting.

Dr. Sprinzak's breakthrough can lead to the development of cancer drugs that specifically target these transactions as needed, further inhibiting or encouraging the flow of information between cells and potentially stopping the uncontrollable proliferation of cancer cells. Dr. Sprinzak's research appeared in the journal PLoS Computational Biology.

Over and out

A cell's communications behavior is mediated by the "Notch signalling pathway," one of the major communication channels between neighboring cells. Information is transferred between cells when Notch receptors from one cell come into contact with Delta molecules, or signals, from another cell. But when the same Delta molecules interact with Notch receptors in the same cell, Dr. Sprinzak found, they shut down their activity and prevent reception of signals from the outside world.

The researchers set out to learn how. In the lab, Dr. Sprinzak and his team attached fluorescent proteins to both Notches and Deltas to track the flow of information. What they found was that the Notch receptors and the Delta signals are actually capable of binding to each other, effectively shutting down each other's activity and forcing the cells into either sender or receiver modes.

"In one state, a cell can send a message and not receive, and in the other it receives and cannot send. They can talk or listen, but they cannot do both at the same time," says Dr. Sprinzak. He compares this communications system to a walkie talkie, in which only one user may be "on the air" at a time.

This switch is crucial to helping the cells make yes-and-no decisions in which neighboring cells adopt distinct fates. Such "cell fate" decisions are responsible for formation of boundaries between developmental tissues, such as those between the vertebrae protecting our spine. They can also account for many patterns of differentiation in the body, such as the pattern of neurons in our brain, or sensory hairs in the inner ear.

Far from enigmatic, this process can actually be seen in the lab. By measuring the fluorescence in real time, it is possible to watch how the levels of a cell's own Delta activity affect the ability of a cell to transfer messages to its neighbors.

Understanding biology through mathematical models

Sender and receiver behavior, says Dr. Sprinzak, not only determines how cells differentiate normally, but also how they differentiate in abnormal situations, such as when cancer cells are growing.

A physicist-turned-biologist, Dr. Sprinzak will next apply mathematical models to analyze the dynamics between the cells and quantify the switch between sender and receiver. Part of an emerging field called Systems Biology, Dr. Sprinzak's work uses tools from mathematics and physics to understand biology on a systematic level. Mathematical equations can help us to better understand the interactions between the genes and proteins in our body which determine cellular behavior and differentiation, he says.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>