Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When it comes to speaking out, cells wait their turn

06.09.2011
Revealing how cells communicate, Tel Aviv University research could lead to new cancer drugs and more

Cell communication is essential for the development of any organism. Scientists know that cells have the power to "talk" to one another, sending signals through their membranes in order to "discuss" what kind of cell they will ultimately become — whether a neuron or a hair, bone, or muscle. And because cells continuously multiply, it's easy to imagine a cacophony of communication.

But according to Dr. David Sprinzak, a new faculty recruit of Tel Aviv University's Department of Biochemistry and Molecular Biology at the George S. Wise Faculty of Life Sciences, cells know when to transmit signals — and they know when it's time to shut up and let other cells do the talking. In collaboration with a team of researchers at the California Institute of Technology, Dr. Sprinzak has discovered the mechanism that allows cells to switch from sender to receiver mode or vice versa, inhibiting their own signals while allowing them to receive information from other cells — controlling their development like a well-run business meeting.

Dr. Sprinzak's breakthrough can lead to the development of cancer drugs that specifically target these transactions as needed, further inhibiting or encouraging the flow of information between cells and potentially stopping the uncontrollable proliferation of cancer cells. Dr. Sprinzak's research appeared in the journal PLoS Computational Biology.

Over and out

A cell's communications behavior is mediated by the "Notch signalling pathway," one of the major communication channels between neighboring cells. Information is transferred between cells when Notch receptors from one cell come into contact with Delta molecules, or signals, from another cell. But when the same Delta molecules interact with Notch receptors in the same cell, Dr. Sprinzak found, they shut down their activity and prevent reception of signals from the outside world.

The researchers set out to learn how. In the lab, Dr. Sprinzak and his team attached fluorescent proteins to both Notches and Deltas to track the flow of information. What they found was that the Notch receptors and the Delta signals are actually capable of binding to each other, effectively shutting down each other's activity and forcing the cells into either sender or receiver modes.

"In one state, a cell can send a message and not receive, and in the other it receives and cannot send. They can talk or listen, but they cannot do both at the same time," says Dr. Sprinzak. He compares this communications system to a walkie talkie, in which only one user may be "on the air" at a time.

This switch is crucial to helping the cells make yes-and-no decisions in which neighboring cells adopt distinct fates. Such "cell fate" decisions are responsible for formation of boundaries between developmental tissues, such as those between the vertebrae protecting our spine. They can also account for many patterns of differentiation in the body, such as the pattern of neurons in our brain, or sensory hairs in the inner ear.

Far from enigmatic, this process can actually be seen in the lab. By measuring the fluorescence in real time, it is possible to watch how the levels of a cell's own Delta activity affect the ability of a cell to transfer messages to its neighbors.

Understanding biology through mathematical models

Sender and receiver behavior, says Dr. Sprinzak, not only determines how cells differentiate normally, but also how they differentiate in abnormal situations, such as when cancer cells are growing.

A physicist-turned-biologist, Dr. Sprinzak will next apply mathematical models to analyze the dynamics between the cells and quantify the switch between sender and receiver. Part of an emerging field called Systems Biology, Dr. Sprinzak's work uses tools from mathematics and physics to understand biology on a systematic level. Mathematical equations can help us to better understand the interactions between the genes and proteins in our body which determine cellular behavior and differentiation, he says.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>