Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Source Discovered for the Generation of Nerve Cells in the Brain

The research group of Professor Magdalena Götz of Helmholtz Zentrum München and Ludwig-Maximilians-Universität (LMU) Munich has made a significant advance in understanding regeneration processes in the brain.

The researchers discovered progenitor cells which can form new glutamatergic neurons following injury to the cerebral cortex. Particularly in Alzheimer’s disease, nerve cell degeneration plays a crucial role.

In the future, new therapeutic options may possibly be derived from steering the generation and/or migration mechanism. These findings have been published in the current issue of the renowned journal Nature Neuroscience.

Until only a few years ago, neurogenesis – the process of nerve cell development – was considered to be impossible in the adult brain. The textbooks asserted that dead nerve cells could not be replaced. Then researchers discovered regions in the forebrain in humans in which new nerve cells can be generated throughout life. These so-called GABAergic cells use gamma-aminobutyric acid (GABA), a neurotransmitter of the central nervous system.

A research team of scientists led by Magdalena Götz, director of the Institute of Stem Cell Research at Helmholtz Zentrum München and chair of the Department of Physiological Genomics of LMU, has now taken a closer look at this brain region in the mouse model. Their findings: Even in the forebrain, there are other nerve cells that are regularly generated – the so-called glutamatergic nerve cells, which use glutamate as neurotransmitter. The stem cell researchers could prove this by means of a specific transcription factor: Tbr2 is only present in progenitor cells of glutamatergic nerve cells.

The newly generated nerve cells in the adult organism are located in the olfactory bulb, the region of the brain involved in the sense of smell. Nerve cells that use glutamate as a neurotransmitter are also responsible for memory – storing and retrieving information. In Alzheimer dementia, alterations in the signal transduction pathways of these special cells play a significant role.

Magdalena Götz explained the reason why this finding is so important: “Neural progenitor cells can generate these newly discovered glutamatergic nerve cells for the neighboring cerebral cortex – for example after brain injury.” The research group was able to demonstrate this on the mouse model: There the cells migrated into the damaged neighboring cerebrum tissue and generated mature neurons. Accordingly, progenitor cells could then replace degenerate nerve cells.

“Now it will be interesting to find out whether this process also takes place in humans, particularly in Alzheimer’s patients,” said Magdalena Götz, “and also whether the process can be kept under control to avoid massive cell death.” One therapeutic approach would then be to attempt to stimulate the body’s own replacement mechanism.

Further Information
Original Publication:: Monika S Brill, Jovica Ninkovic, Eleanor Winpenny, Rebecca D Hodge, Ilknur Ozen, Roderick Yang, Alexandra Lepier, Sergio Gascón, Ferenc Erdelyi, Gabor Szabo, Carlos Parras, Francois Guillemot, Michael Frotscher, Benedikt Berninger, Robert F Hevner, Olivier Raineteau & Magdalena Götz: Nature Neuroscience, Volume 12 No 11 pp1351-1474 (doi:10.1038/nn.2416)

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

The Institute of Stem Cell Research of Helmholtz Zentrum München investigates the cellular and molecular mechanisms which regulate cell fate and cell proliferation in different organ systems. The scientists investigate the stem cells of different organs, e.g. of the nervous system or of the blood and immune systems in order to elucidate the molecular and cellular mechanisms that are responsible for the common features of all stem cells, such as multi-potency and self-renewal. Another research focus is the regulation of the genesis of specific cell types from stem cells with respect to cell replacement therapy.

Editor: Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 85764 Neuherberg

Tel.: 089-3187-3946, Fax 089-3187-3324, Internet:, E-Mail:

Sven Winkler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>