Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Source Discovered for the Generation of Nerve Cells in the Brain

02.12.2009
The research group of Professor Magdalena Götz of Helmholtz Zentrum München and Ludwig-Maximilians-Universität (LMU) Munich has made a significant advance in understanding regeneration processes in the brain.

The researchers discovered progenitor cells which can form new glutamatergic neurons following injury to the cerebral cortex. Particularly in Alzheimer’s disease, nerve cell degeneration plays a crucial role.

In the future, new therapeutic options may possibly be derived from steering the generation and/or migration mechanism. These findings have been published in the current issue of the renowned journal Nature Neuroscience.

Until only a few years ago, neurogenesis – the process of nerve cell development – was considered to be impossible in the adult brain. The textbooks asserted that dead nerve cells could not be replaced. Then researchers discovered regions in the forebrain in humans in which new nerve cells can be generated throughout life. These so-called GABAergic cells use gamma-aminobutyric acid (GABA), a neurotransmitter of the central nervous system.

A research team of scientists led by Magdalena Götz, director of the Institute of Stem Cell Research at Helmholtz Zentrum München and chair of the Department of Physiological Genomics of LMU, has now taken a closer look at this brain region in the mouse model. Their findings: Even in the forebrain, there are other nerve cells that are regularly generated – the so-called glutamatergic nerve cells, which use glutamate as neurotransmitter. The stem cell researchers could prove this by means of a specific transcription factor: Tbr2 is only present in progenitor cells of glutamatergic nerve cells.

The newly generated nerve cells in the adult organism are located in the olfactory bulb, the region of the brain involved in the sense of smell. Nerve cells that use glutamate as a neurotransmitter are also responsible for memory – storing and retrieving information. In Alzheimer dementia, alterations in the signal transduction pathways of these special cells play a significant role.

Magdalena Götz explained the reason why this finding is so important: “Neural progenitor cells can generate these newly discovered glutamatergic nerve cells for the neighboring cerebral cortex – for example after brain injury.” The research group was able to demonstrate this on the mouse model: There the cells migrated into the damaged neighboring cerebrum tissue and generated mature neurons. Accordingly, progenitor cells could then replace degenerate nerve cells.

“Now it will be interesting to find out whether this process also takes place in humans, particularly in Alzheimer’s patients,” said Magdalena Götz, “and also whether the process can be kept under control to avoid massive cell death.” One therapeutic approach would then be to attempt to stimulate the body’s own replacement mechanism.

Further Information
Original Publication:: Monika S Brill, Jovica Ninkovic, Eleanor Winpenny, Rebecca D Hodge, Ilknur Ozen, Roderick Yang, Alexandra Lepier, Sergio Gascón, Ferenc Erdelyi, Gabor Szabo, Carlos Parras, Francois Guillemot, Michael Frotscher, Benedikt Berninger, Robert F Hevner, Olivier Raineteau & Magdalena Götz: Nature Neuroscience, Volume 12 No 11 pp1351-1474 (doi:10.1038/nn.2416)

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

The Institute of Stem Cell Research of Helmholtz Zentrum München investigates the cellular and molecular mechanisms which regulate cell fate and cell proliferation in different organ systems. The scientists investigate the stem cells of different organs, e.g. of the nervous system or of the blood and immune systems in order to elucidate the molecular and cellular mechanisms that are responsible for the common features of all stem cells, such as multi-potency and self-renewal. Another research focus is the regulation of the genesis of specific cell types from stem cells with respect to cell replacement therapy.

Editor: Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 85764 Neuherberg

Tel.: 089-3187-3946, Fax 089-3187-3324, Internet: www.helmholtz-muenchen.de, E-Mail: presse@helmholtz-muenchen.de

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>