Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Source Discovered for the Generation of Nerve Cells in the Brain

02.12.2009
The research group of Professor Magdalena Götz of Helmholtz Zentrum München and Ludwig-Maximilians-Universität (LMU) Munich has made a significant advance in understanding regeneration processes in the brain.

The researchers discovered progenitor cells which can form new glutamatergic neurons following injury to the cerebral cortex. Particularly in Alzheimer’s disease, nerve cell degeneration plays a crucial role.

In the future, new therapeutic options may possibly be derived from steering the generation and/or migration mechanism. These findings have been published in the current issue of the renowned journal Nature Neuroscience.

Until only a few years ago, neurogenesis – the process of nerve cell development – was considered to be impossible in the adult brain. The textbooks asserted that dead nerve cells could not be replaced. Then researchers discovered regions in the forebrain in humans in which new nerve cells can be generated throughout life. These so-called GABAergic cells use gamma-aminobutyric acid (GABA), a neurotransmitter of the central nervous system.

A research team of scientists led by Magdalena Götz, director of the Institute of Stem Cell Research at Helmholtz Zentrum München and chair of the Department of Physiological Genomics of LMU, has now taken a closer look at this brain region in the mouse model. Their findings: Even in the forebrain, there are other nerve cells that are regularly generated – the so-called glutamatergic nerve cells, which use glutamate as neurotransmitter. The stem cell researchers could prove this by means of a specific transcription factor: Tbr2 is only present in progenitor cells of glutamatergic nerve cells.

The newly generated nerve cells in the adult organism are located in the olfactory bulb, the region of the brain involved in the sense of smell. Nerve cells that use glutamate as a neurotransmitter are also responsible for memory – storing and retrieving information. In Alzheimer dementia, alterations in the signal transduction pathways of these special cells play a significant role.

Magdalena Götz explained the reason why this finding is so important: “Neural progenitor cells can generate these newly discovered glutamatergic nerve cells for the neighboring cerebral cortex – for example after brain injury.” The research group was able to demonstrate this on the mouse model: There the cells migrated into the damaged neighboring cerebrum tissue and generated mature neurons. Accordingly, progenitor cells could then replace degenerate nerve cells.

“Now it will be interesting to find out whether this process also takes place in humans, particularly in Alzheimer’s patients,” said Magdalena Götz, “and also whether the process can be kept under control to avoid massive cell death.” One therapeutic approach would then be to attempt to stimulate the body’s own replacement mechanism.

Further Information
Original Publication:: Monika S Brill, Jovica Ninkovic, Eleanor Winpenny, Rebecca D Hodge, Ilknur Ozen, Roderick Yang, Alexandra Lepier, Sergio Gascón, Ferenc Erdelyi, Gabor Szabo, Carlos Parras, Francois Guillemot, Michael Frotscher, Benedikt Berninger, Robert F Hevner, Olivier Raineteau & Magdalena Götz: Nature Neuroscience, Volume 12 No 11 pp1351-1474 (doi:10.1038/nn.2416)

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1680 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

The Institute of Stem Cell Research of Helmholtz Zentrum München investigates the cellular and molecular mechanisms which regulate cell fate and cell proliferation in different organ systems. The scientists investigate the stem cells of different organs, e.g. of the nervous system or of the blood and immune systems in order to elucidate the molecular and cellular mechanisms that are responsible for the common features of all stem cells, such as multi-potency and self-renewal. Another research focus is the regulation of the genesis of specific cell types from stem cells with respect to cell replacement therapy.

Editor: Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 85764 Neuherberg

Tel.: 089-3187-3946, Fax 089-3187-3324, Internet: www.helmholtz-muenchen.de, E-Mail: presse@helmholtz-muenchen.de

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>