Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sorting the drivers from the passengers in the cancer genome

18.02.2010
Screening cancer genomes for the driver mutations in tumour suppressor genes

A new study of mutations in cancer genomes shows how researchers can begin to distinguish the 'driver' mutations that push cells towards cancer from the 'passenger' mutations that are a by-product of cancer cell development. The study also shows that at least one in nine genes can be removed without killing human cells.

Many cancer genomes are riddled with mutations. The vast majority of these are likely to be passengers – mutations that don't contribute to the development of cancer but have occurred during the growth of the cancer – while a small minority are the critical drivers. The challenge of efficiently picking out the guilty drivers in the huge identification parade presented by the set of abnormalities found in a cancer genome is yet to be fully answered.

"It is essential that we can distinguish the drivers from the passengers because knowing the driver mutations and hence the critical genes they are in leads to understanding of the cellular processes that have been subverted in cancers and hence to new drugs," explains Professor Mike Stratton, senior author on the study from the Wellcome Trust Sanger Institute. "Our study provides one example of how researchers can sift through the large numbers of a particular type of mutation present in cancer genomes in order to distinguish drivers from passengers."

One class of cancer gene – called a tumour suppressor gene – inhibits tumour formation, acting as a brake on the process. This type of gene has to be inactivated in or deleted from the genome of the cancer cell in order to release the brake, allowing cancer to develop. The process that inactivates a tumour suppressor gene often involves deletion of both copies of the gene in the cancer (one copy originally inherited from the mother and one from the father). Therefore, in the past finding regions in which both copies of a gene are removed in many cancer cases has proven to be a fruitful way of pinpointing the location of new tumour suppressor genes.

The problem is that both copies of a gene can also be frequently deleted from cancers in regions called fragile sites. The underlying DNA structure of fragile sites appears to make them particularly prone to breakage and hence to being jettisoned from the cancer genome. The deletions at fragile sites are, most often, likely to be passengers. Therefore the challenge is how to distinguish between the passenger deletions over fragile sites and the driver deletions over tumour suppressor genes.

"We analysed almost 750 cancer cell samples for deletions at known tumour suppressor genes and compared them to deletions at known fragile sites," explains Dr Graham Bignell, a lead author on the paper. "We found clear differences between the two which allowed us to construct 'signatures' of deletions that are associated with tumour suppressor genes and signatures associated with fragile sites."

For example, one crucial difference between the tumour suppressors and fragile sites was that both copies of tumour suppressor genes were usually deleted and it was rare to find only one copy deleted. In contrast, it was often the case that only one copy was deleted at fragile sites. This provides a first-pass test to sift through for tumour suppressor genes: if both copies of a gene are usually deleted and one copy deleted only rarely then these deletions may be drivers and the gene may be a tumour suppressor. However, if it is common to find only one copy deleted then the deletions may be passengers and it may well be a fragile site.

The authors then used these signatures to look at the deletions that they found in cancers which were currently unexplained. Three regions had the signature of a tumour suppressor gene, but many looked like fragile sites.

"When it became clear in the 1990s that novel tumour suppressor genes could be discovered by looking at genome deletions, many hands were put to the pump," explains Dr Andy Futreal, co-leader of the Cancer Genome Project. "But it became clear that it wasn't quite that simple. New tumour suppressor genes just weren't that easy to find, despite the presence of many deletions. We now have some insight as to why: many of the regions being studied were actually fragile sites."

Because the researchers were looking in cancer cell lines for genes that have been deleted they also uncovered genes that are simply not required for cells to grow, at least in the artificial environment of the laboratory test tube. In aggregate, over the almost 750 cancer cell lines used in the study, one in nine genes was deleted and therefore not mandatory for the cells to live and grow.

Previous studies showed that one in 100 genes on the X chromosome can be inactivated without apparent effect on the well being of the whole person, while similar work across the genome suggested that one in 50 genes can be inactivated in apparently healthy people. Thus, predictably enough, cancers seem to be more tolerant than healthy people and can lose a much greater proportion of their genes without being impaired.

For cancer research, developing novel methods to discern the driver mutations remains a crucial goal.

"This is one step in building a suite of tools to draw out the important suspects in cancer genetics," continues Professor Stratton, "tools that will make the most of the massive efforts that lie ahead from organizations such as the International Cancer Genome Consortium, which will sequence as many as 500 samples from each of 50 cancer types over the next few years.

"Our results also illuminate novel findings that emerge from genome wide research, light that is shone on other corners of genome biology. While we mustn't overstate this – these are cancer cells growing in test tubes – it is fascinating to see the catalogue of genes that are not required for basic survival."

Don Powell | EurekAlert!
Further information:
http://www.sanger.ac.uk

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>