Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Songbirds reveal how practice improves performance

07.07.2009
MIT research provides new insights about trial-and-error learning

Learning complex skills like playing an instrument requires a sequence of movements that can take years to master. Last year, MIT neuroscientists reported that by studying the chirps of tiny songbirds, they were able to identify how two distinct brain circuits contribute to this type of trial-and-error learning in different stages of life.

Now, the researchers have gained new insights into a specific mechanism behind this learning. In a paper being published in the Proceedings of the National Academy of Sciences during the week of July 6, the scientists report that as zebra finches fine-tune their songs, the brain initially stores improvements in one brain pathway before transferring this learned information to the motor pathway for long-term storage.

The work could further our understanding of the complicated circuitry of the basal ganglia, brain structures that play a key role in learning and habit formation in humans. The basal ganglia are also linked to disorders like Parkinson's disease, obsessive-compulsive disorder and drug addiction.

"Birds provide a great system to study the fundamental mechanisms of how the basal ganglia contributes to learning," said senior author Michale Fee, an investigator in the McGovern Institute for Brain Research at MIT. "Our results support the idea that the basal ganglia are the gateway through which newly acquired information affects our actions."

Young zebra finches learn to sing by mimicking their fathers, whose song contains multiple syllables in a particular sequence. Like the babbling of human babies, young birds initially produce a disorganized stream of tones, but after practicing thousands of times they master the syllables and rhythms of their father's song. Previous studies with finches have identified two distinct brain circuits that contribute to this behavior. A motor pathway is responsible for producing the song, and a separate pathway is essential for learning to imitate the father. This learning pathway, called the anterior forebrain pathway (AFP), has similarities to basal ganglia circuits in humans.

"For this study, we wanted to know how these two pathways work together as the bird is learning," explained first author Aaron Andalman, a graduate student in Fee's lab. "So we trained the birds to learn a new variation in their song and then we inactivated the AFP circuit to see how it was contributing to the learning."

To train the birds, researchers monitored their singing and delivered white noise whenever a bird sang a particular syllable at a lower pitch than usual.

"The bird hears this unexpected noise, thinks it made a 'mistake', and on future attempts gradually adjusts the pitch of that syllable upward to avoid repeating that error," Fee said. "Over many days we can train the bird to move the pitch of the syllable up and down the musical scale."

On a particular day, after four hours of training in which the birds learned to raise the pitch, the researchers temporarily inactivated the AFP with a short-acting drug (tetrodotoxin, a neurotoxin that comes from the puffer fish). The pitch immediately slipped back to where it had been at the start of that day's training session — suggesting that the recently learned changes were stored within the AFP.

Listen to the birds adjust the pitch of their song here: http://web.mit.edu/feelab/media/andalmanandfee.html

But the researchers found that over the course of 24 hours, the brain had transferred the newly learned information from the AFP to the motor pathway. The motor pathway was storing all of the accumulated pitch changes from previous training sessions.

Fee compares the effect to how recent edits to a document are temporarily stored in a computer's dynamic memory and then saved regularly to the hard drive. It is the accumulation of changes in the motor pathway "hard drive" that constitutes the development of a new skill.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/feelab/media/andalmanandfee.html

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>