Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Songbirds reveal how practice improves performance

07.07.2009
MIT research provides new insights about trial-and-error learning

Learning complex skills like playing an instrument requires a sequence of movements that can take years to master. Last year, MIT neuroscientists reported that by studying the chirps of tiny songbirds, they were able to identify how two distinct brain circuits contribute to this type of trial-and-error learning in different stages of life.

Now, the researchers have gained new insights into a specific mechanism behind this learning. In a paper being published in the Proceedings of the National Academy of Sciences during the week of July 6, the scientists report that as zebra finches fine-tune their songs, the brain initially stores improvements in one brain pathway before transferring this learned information to the motor pathway for long-term storage.

The work could further our understanding of the complicated circuitry of the basal ganglia, brain structures that play a key role in learning and habit formation in humans. The basal ganglia are also linked to disorders like Parkinson's disease, obsessive-compulsive disorder and drug addiction.

"Birds provide a great system to study the fundamental mechanisms of how the basal ganglia contributes to learning," said senior author Michale Fee, an investigator in the McGovern Institute for Brain Research at MIT. "Our results support the idea that the basal ganglia are the gateway through which newly acquired information affects our actions."

Young zebra finches learn to sing by mimicking their fathers, whose song contains multiple syllables in a particular sequence. Like the babbling of human babies, young birds initially produce a disorganized stream of tones, but after practicing thousands of times they master the syllables and rhythms of their father's song. Previous studies with finches have identified two distinct brain circuits that contribute to this behavior. A motor pathway is responsible for producing the song, and a separate pathway is essential for learning to imitate the father. This learning pathway, called the anterior forebrain pathway (AFP), has similarities to basal ganglia circuits in humans.

"For this study, we wanted to know how these two pathways work together as the bird is learning," explained first author Aaron Andalman, a graduate student in Fee's lab. "So we trained the birds to learn a new variation in their song and then we inactivated the AFP circuit to see how it was contributing to the learning."

To train the birds, researchers monitored their singing and delivered white noise whenever a bird sang a particular syllable at a lower pitch than usual.

"The bird hears this unexpected noise, thinks it made a 'mistake', and on future attempts gradually adjusts the pitch of that syllable upward to avoid repeating that error," Fee said. "Over many days we can train the bird to move the pitch of the syllable up and down the musical scale."

On a particular day, after four hours of training in which the birds learned to raise the pitch, the researchers temporarily inactivated the AFP with a short-acting drug (tetrodotoxin, a neurotoxin that comes from the puffer fish). The pitch immediately slipped back to where it had been at the start of that day's training session — suggesting that the recently learned changes were stored within the AFP.

Listen to the birds adjust the pitch of their song here: http://web.mit.edu/feelab/media/andalmanandfee.html

But the researchers found that over the course of 24 hours, the brain had transferred the newly learned information from the AFP to the motor pathway. The motor pathway was storing all of the accumulated pitch changes from previous training sessions.

Fee compares the effect to how recent edits to a document are temporarily stored in a computer's dynamic memory and then saved regularly to the hard drive. It is the accumulation of changes in the motor pathway "hard drive" that constitutes the development of a new skill.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/feelab/media/andalmanandfee.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>