Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Songbird's strategy for changing its tune could inform rehab efforts

01.02.2011
It takes songbirds and baseball pitchers thousands of repetitions – a choreography of many muscle movements -- to develop an irresistible trill or a killer slider.

Now, scientists have discovered that the male Bengalese finch uses a simple mental computation and an uncanny memory to create its near-perfect mate-catching melody -- a finding that could have implications for rehabilitating people with neuromuscular diseases and injuries.

Young male Bengalese finches practice their boisterous mating song hundreds of times a day, comparing their melody to the songs of their tutors. By the time they are adults, they have zeroed in on a "successful" pitch for each note in their song. But throughout life they continuously monitor their tune, working to maintain it in the face of such factors as aging, hormone levels, muscular injuries, and illness.

In their study, the UCSF neuroscientists explored the way in which the songbirds learn to perfect and maintain their song, a model of how one learns -- and might relearn -- fine motor skills when provided only simple reinforcement signals of success or failure.

In a series of experiments, they exposed the singing birds to a sound they did not like at the precise moment they were uttering a specific note, or syllable. After many exposures, the birds learned to alter the pitch of that syllable to avoid prompting the sound. But it was the way in which they did this that was remarkable.

The finches learned to change the pitch of a single note by computing the average pitch of hundreds of what they perceived as successful performances of that note – when they avoided hearing the unpleasant sound. The mental computation required the birds' brains to remember every slight change in pitch of a single syllable sung perhaps 500 times in a day.

"We were very surprised that the brain can direct so complex a behavioral change with such a simple type of computation," said the lead author of the paper, Jonathan Charlesworth, a UCSF PhD candidate in neuroscience in the lab of senior author Michael Brainard, PhD, associate professor of physiology.

The finding suggests "it might be possible to guide a damaged nervous system to recovery using only a simple automated/computerized system that emits simple instructive signals," said Charlesworth. "Given that the averaging rule was true even for subtle details of song, an automated therapeutic strategy could help people regain the intricate details of fine motor skills like playing the piano, articulating speech, or dancing."

The phenomenon may explain how people learn to produce accents or subtle vocal and facial cues: a tilt of the head when we disagree versus the slight nod when we are in accord, Charlesworth said.

The research is reported as an Advance Online Publication this week (posted January 30, 2011) by the journal "Nature Neuroscience" and will appear later in the journal's print addition.

For the study, the scientists developed a computer program that recognized the pitch of a single syllable each time a bird sang it. The computer was able to trigger a mildly disruptive short burst of sound at a specific time within that note – with a precision of about 1/100th of a second.

In one set of experiments, the computer program issued the short sound burst whenever the bird sang the target syllable at a pitch below a certain threshold. Over the course of several hundred trials, the birds learned to change their tune enough to avoid the noise about 80 percent of the time. Not every "successful" new pitch was the same; they didn't have to be. They just had to be above the key threshold.

The researchers also presented the singers with another, more difficult task. They programmed the computer to measure the pitch both near the beginning and the end of a single syllable. The computer only triggered white noise after the second measurement, and, critically, only if the bird sang the first part of the syllable below a certain threshold and the second part above a similar threshold.

The scientists found that the birds learned to avoid the noise by making a more pronounced "swoop" of sound -- starting lower than normal and ending higher than normal. This showed that the birds were able to keep track of the pitch both at the beginning and the end of a single tenth-of-a-second syllable.

"This precision confirms the view that we learn not only in response to external stimuli, but through the capacity for variation in our actions," Brainard said. The nervous system, he said, is constantly introducing variations into our actions and paying very close attention to the consequences of those variations.

"Even Michael Jordan was unable to shoot a free throw the same way each time, instead exhibiting subtle variation that resulted in many baskets but a few misses," said Charlesworth. "This variation, while causing occasional misses, can be productive by allowing for learning in the case of changes to our body or environment."

The experiments indicate, he said, that "even the very subtle variations that you might have thought were irrelevant, such as our annoying inability to throw a dart or break open a billiards rack the same way each time, can play a crucial role in shaping how we learn."

The development of new behavior is akin to Darwinian evolution, but on a very short time scale, said Brainard. The bird creates a reservoir of varying behaviors – analogous to genetic variation -- in response to changes in its environment. The environment then selects for a specific new behavior -- the new pitch – from the range of available variation.

As a result of the variation and selection, the bird learns to express a new adaptive behavior. The development of new behavior can have "tag-along" consequences, producing new behavior that has no adaptive benefit, he said. Influential behavioral scientist B.F. Skinner showed decades ago that pigeons randomly rewarded with food learned to associate the reward with whatever they were doing at the time -- say fluffing their feathers. They then fluffed their feathers frequently, said Brainard, in hopes of summoning a reward.

Charlesworth and Brainard cited the well-known superstitious behavior of baseball players as an example of this tag-along potential in people. Presumably, a coach's habit of leaving his left shoe untied, or a pitcher always wearing a garnet ring stemmed from winning some key game at a time when they happened to be shoelace-challenged or bejeweled. But don't try to explain to the coach or pitcher that there is no connection between the loose shoelaces or the bling.

The researchers now plan to study the brain regions associated with bird song learning, with hopes of finding how neurons generate variation in behavior and keep precise track of performance, as well as compute the averaging calculation that underlies learning.

Co-authors on the paper are Evren Tumer, PhD, a postdoctoral scientist in Brainard's lab at the time of the research; and Timothy Warren, a PhD candidate in the lab.

Funding support for the research came from the National Institutes of Health and the National Science Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jennifer O'Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>