Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving single molecule mobility

18.10.2010
A versatile formula describes the energetic conditions needed to transport molecules laterally on surfaces

Nanotechnologists assemble intricate nanodevices, such as computer chips, molecule by molecule using ‘bottom-up’ techniques that mirror nature. One approach shuttles molecules along surfaces into new and functional arrangements using electrons from a scanning tunneling microscope (STM) tip.

However, because energy transfer between the atomic-scale tip and the surface chemical involves many complex interactions, laborious efforts are currently needed to understand even the simplest reactions.

Results from a new theoretical and experimental study, however, may soon allow non-specialists to easily construct molecular devices. Kenta Motobayashi and Yousoo Kim from the RIKEN Advanced Science Institute in Wako and their colleagues from RIKEN and Japanese universities have developed a mathematical formula that describes how STM-induced molecular vibrations couple with dynamic movements on surfaces—enabling precise calculation of the energy and number of electrons needed to initiate single molecule motions1.

When scientists use an STM to perform a straightforward molecular movement—for example, making carbon monoxide (CO) compounds ‘hop’ on palladium surfaces—they see that the fraction of successful movements depends heavily on the applied voltage. For CO, this is because hopping from one surface site to another requires a tunneling electron to initiate a specific stretching vibration. In the voltage range corresponding to this vibrational energy, CO hopping can increase exponentially, giving rise to so-called ‘action spectra’: curves of movement yields versus voltage with shapes characteristic to particular surface reactions.

Motobayashi, Kim and colleagues sought to uncover the microscopic mechanisms behind STM-stimulated diffusion by proposing a formula that relates movement yields to the energy transfer efficiency needed to excite reaction-triggering vibrations, while also accounting for thermal interactions. Fitting the CO action spectra to this formula revealed the exact magnitudes of critical reaction properties, like vibrational energies and rate constants, because the spectral curves were highly sensitive to small modification of the fit parameters.

Furthermore, the team’s new equation proved versatile enough to analyze the more complex motions of butene (C4H8) molecules on palladium, a process that involves multiple excitations. Analyzing the butene action spectra with the formula showed the presence of three distinct vibrations and enabled calculation of the reaction order—a fundamental chemical property that identifies the number of tunneling electrons needed to initiate surface movement.

According to Motobayashi, the surprising abilities of this simple method should expand bottom-up nanotechnology practices. “STM-based action spectroscopy, which can precisely identify chemical species thanks to our spectral fittings, promises to contribute greatly to the technique of composing molecular devices,” he states.

The corresponding author for this highlight is based at the Surface and Interface Science laboratory, RIKEN Advanced Science Institute

Journal information

1. Motobayashi, K., Kim, Y., Ueba, H. & Kawai, M. Insight into action spectroscopy for single molecule motion and reactions through inelastic electron tunneling. Physical Review Letters 105, 076101 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>