Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the riddle of the turtle shell

28.09.2009
An investigation of developing embryos reveals that tissue folding and movement is the key to the turtle’s unusual body plan

The long-standing mystery of the evolution of the turtle shell has been resolved by researchers from the RIKEN Center for Developmental Biology in Kobe. The answer involves a folding process during embryonic development accompanied by a progression of relatively straightforward changes, not the major evolutionary leap that had previously been proposed.

Turtles, birds, mammals, lizards and crocodiles, known collectively as the amniotes, share a common ancestor. Compared with the other members of this group, however, the turtle skeleton seems inside out. The dorsal shell is generated by a fusing of the ribs, and the shoulder blade, or scapula, is contained inside the rib cage. In the other animals, the scapula is outside the rib cage.

Shigeru Kuratani and his colleagues thought the key to the evolution of this radical change may lie in the embryological development of the turtle. As detailed in a recent paper in Science1, they used tissue-specific stains and the activity of pivotal genes to compare the development of bones and muscles in Chinese soft-shelled turtles to equivalent embryonic stages in chickens and mice.

What they found was a delicate interplay of tissue folding and movement. In the chicken and mouse, the ribs grow out from the spinal column and follow the body wall around the sides to the chest of the developing animal forming a cage that leaves the shoulder blade outside. But the turtle ribs stop short, sticking straight out from backbone without bending. Then, a folding process occurs along the sides of the turtle pinching in the body wall between the ribs and the shoulder blade, leaving the ribs over and above the scapula. After the short turtle ribs and interspersed skin tissue fuse to form the bony dorsal shell, the fold forms its outer lateral extent.

Some of the muscular connections between the ribs and other parts of the skeleton remain intact during the folding process. But the resultant positioning of bones in the turtle has allowed other functional muscular connections to evolve. A 220-million-year-old turtle fossil discovered last year in China, which has a shell only on the underside, could easily represent an intermediate stage in development. “A developmental stage of the modern turtle, when the ribs have not encapsulated the shoulder blade yet, resembles this fossil species,” Kuratani says.

What causes the folding process in turtle development is unknown. “That will be the subject of a future study,” Kuratani says.

The corresponding author for this highlight is based at the Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology.

1. Nagashima, H., Sugahara, F., Takechi, M., Ericsson, R., Kawashima-Ohya, Y., Narita, Y. & Kuratani, S. Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325, 193–196 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6045
http://www.researchsea.com

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>