Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the riddle of the turtle shell

28.09.2009
An investigation of developing embryos reveals that tissue folding and movement is the key to the turtle’s unusual body plan

The long-standing mystery of the evolution of the turtle shell has been resolved by researchers from the RIKEN Center for Developmental Biology in Kobe. The answer involves a folding process during embryonic development accompanied by a progression of relatively straightforward changes, not the major evolutionary leap that had previously been proposed.

Turtles, birds, mammals, lizards and crocodiles, known collectively as the amniotes, share a common ancestor. Compared with the other members of this group, however, the turtle skeleton seems inside out. The dorsal shell is generated by a fusing of the ribs, and the shoulder blade, or scapula, is contained inside the rib cage. In the other animals, the scapula is outside the rib cage.

Shigeru Kuratani and his colleagues thought the key to the evolution of this radical change may lie in the embryological development of the turtle. As detailed in a recent paper in Science1, they used tissue-specific stains and the activity of pivotal genes to compare the development of bones and muscles in Chinese soft-shelled turtles to equivalent embryonic stages in chickens and mice.

What they found was a delicate interplay of tissue folding and movement. In the chicken and mouse, the ribs grow out from the spinal column and follow the body wall around the sides to the chest of the developing animal forming a cage that leaves the shoulder blade outside. But the turtle ribs stop short, sticking straight out from backbone without bending. Then, a folding process occurs along the sides of the turtle pinching in the body wall between the ribs and the shoulder blade, leaving the ribs over and above the scapula. After the short turtle ribs and interspersed skin tissue fuse to form the bony dorsal shell, the fold forms its outer lateral extent.

Some of the muscular connections between the ribs and other parts of the skeleton remain intact during the folding process. But the resultant positioning of bones in the turtle has allowed other functional muscular connections to evolve. A 220-million-year-old turtle fossil discovered last year in China, which has a shell only on the underside, could easily represent an intermediate stage in development. “A developmental stage of the modern turtle, when the ribs have not encapsulated the shoulder blade yet, resembles this fossil species,” Kuratani says.

What causes the folding process in turtle development is unknown. “That will be the subject of a future study,” Kuratani says.

The corresponding author for this highlight is based at the Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology.

1. Nagashima, H., Sugahara, F., Takechi, M., Ericsson, R., Kawashima-Ohya, Y., Narita, Y. & Kuratani, S. Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325, 193–196 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6045
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>