Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the riddle of the turtle shell

28.09.2009
An investigation of developing embryos reveals that tissue folding and movement is the key to the turtle’s unusual body plan

The long-standing mystery of the evolution of the turtle shell has been resolved by researchers from the RIKEN Center for Developmental Biology in Kobe. The answer involves a folding process during embryonic development accompanied by a progression of relatively straightforward changes, not the major evolutionary leap that had previously been proposed.

Turtles, birds, mammals, lizards and crocodiles, known collectively as the amniotes, share a common ancestor. Compared with the other members of this group, however, the turtle skeleton seems inside out. The dorsal shell is generated by a fusing of the ribs, and the shoulder blade, or scapula, is contained inside the rib cage. In the other animals, the scapula is outside the rib cage.

Shigeru Kuratani and his colleagues thought the key to the evolution of this radical change may lie in the embryological development of the turtle. As detailed in a recent paper in Science1, they used tissue-specific stains and the activity of pivotal genes to compare the development of bones and muscles in Chinese soft-shelled turtles to equivalent embryonic stages in chickens and mice.

What they found was a delicate interplay of tissue folding and movement. In the chicken and mouse, the ribs grow out from the spinal column and follow the body wall around the sides to the chest of the developing animal forming a cage that leaves the shoulder blade outside. But the turtle ribs stop short, sticking straight out from backbone without bending. Then, a folding process occurs along the sides of the turtle pinching in the body wall between the ribs and the shoulder blade, leaving the ribs over and above the scapula. After the short turtle ribs and interspersed skin tissue fuse to form the bony dorsal shell, the fold forms its outer lateral extent.

Some of the muscular connections between the ribs and other parts of the skeleton remain intact during the folding process. But the resultant positioning of bones in the turtle has allowed other functional muscular connections to evolve. A 220-million-year-old turtle fossil discovered last year in China, which has a shell only on the underside, could easily represent an intermediate stage in development. “A developmental stage of the modern turtle, when the ribs have not encapsulated the shoulder blade yet, resembles this fossil species,” Kuratani says.

What causes the folding process in turtle development is unknown. “That will be the subject of a future study,” Kuratani says.

The corresponding author for this highlight is based at the Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology.

1. Nagashima, H., Sugahara, F., Takechi, M., Ericsson, R., Kawashima-Ohya, Y., Narita, Y. & Kuratani, S. Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325, 193–196 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6045
http://www.researchsea.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>