Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solutions to Baltic oxygen depletion to be evaluated

05.03.2010
Lund University researcher Daniel Conley has received a prestigious award from the American Pew Charitable Trusts. With the help of the award money, Daniel Conley will evaluate a number of new technical solutions to help reduce oxygen depletion in the Baltic Sea.

Professor Daniel Conley has been awarded USD 150 000 from the Pew Charitable Trusts in the USA. The money will go to his research on oxygen depletion in the Baltic Sea. For a number of years, Professor Conley's research has focused on how to tackle the problem of dead seabeds. Daniel Conley is a biogeochemist and conducts research on the flow of nutrients on land and in the sea. He works at the Department of Earth and Ecosystem Sciences at Lund University.

The reason for the oxygen depletion in the Baltic Sea is the large input of nutrients from the land to the sea, primarily from agriculture and fossil fuels. The nutrients cause eutrophication in the sea; algae grow rapidly when there is a greater supply of nutrients, but when the algae die and rot on the seabed, large amounts of oxygen are used in the rotting process, which leads to a lack of oxygen. When there is little oxygen, animals and plants cannot live there and problems of dead seabeds arise. The dead seabeds in the Baltic are the world's most extensive example of oxygen depletion resulting from human emissions.

Now Daniel Conley will carry out a three-year scientific evaluation of a number of methods that aim to remedy the dead seabeds in the Baltic Sea. Daniel Conley will investigate the effectiveness and cost of the methods, as well as the impact on animals and plants. In addition, he will compare new technical solutions with more traditional methods.

In recent years a number of new technical solutions to the problem of oxygen depletion in the sea have been proposed and tested, in addition to the more traditional methods that are first and foremost about trying to reduce the transfer of nutrients from the land. One example of a new solution is to actively introduce oxygen gas into the water at depth in order to reduce oxygen depletion on the seabeds.

For more information, please contact:
Daniel Conley, tel +46 (0)70 749 43 41, Daniel.Conley@geol.lu.se
Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se; +46-46 222 7186

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>