Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solutions to Baltic oxygen depletion to be evaluated

Lund University researcher Daniel Conley has received a prestigious award from the American Pew Charitable Trusts. With the help of the award money, Daniel Conley will evaluate a number of new technical solutions to help reduce oxygen depletion in the Baltic Sea.

Professor Daniel Conley has been awarded USD 150 000 from the Pew Charitable Trusts in the USA. The money will go to his research on oxygen depletion in the Baltic Sea. For a number of years, Professor Conley's research has focused on how to tackle the problem of dead seabeds. Daniel Conley is a biogeochemist and conducts research on the flow of nutrients on land and in the sea. He works at the Department of Earth and Ecosystem Sciences at Lund University.

The reason for the oxygen depletion in the Baltic Sea is the large input of nutrients from the land to the sea, primarily from agriculture and fossil fuels. The nutrients cause eutrophication in the sea; algae grow rapidly when there is a greater supply of nutrients, but when the algae die and rot on the seabed, large amounts of oxygen are used in the rotting process, which leads to a lack of oxygen. When there is little oxygen, animals and plants cannot live there and problems of dead seabeds arise. The dead seabeds in the Baltic are the world's most extensive example of oxygen depletion resulting from human emissions.

Now Daniel Conley will carry out a three-year scientific evaluation of a number of methods that aim to remedy the dead seabeds in the Baltic Sea. Daniel Conley will investigate the effectiveness and cost of the methods, as well as the impact on animals and plants. In addition, he will compare new technical solutions with more traditional methods.

In recent years a number of new technical solutions to the problem of oxygen depletion in the sea have been proposed and tested, in addition to the more traditional methods that are first and foremost about trying to reduce the transfer of nutrients from the land. One example of a new solution is to actively introduce oxygen gas into the water at depth in order to reduce oxygen depletion on the seabeds.

For more information, please contact:
Daniel Conley, tel +46 (0)70 749 43 41,
Pressofficer Lena Björk Blixt;; +46-46 222 7186

Lena Björk Blixt | idw
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>