Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar panels can attract breeding water insects

28.05.2010
...but scientists propose a simple fix

Solar power might be nature's most plentiful and benign source of energy, but shiny black solar cells can lure water insects away from critical breeding areas, a Michigan State University scientist and colleagues warn.

Applying white grids or other methods to break up the polarized reflection of light, however, makes mayflies and other aquatic insects far less likely to deposit eggs on the panels thinking that they are water, the group discovered.

"This research demonstrates that solar panels are a strong new source of polarized light pollution that creates ecological traps for many types of insect," says Bruce Robertson, a research associate at MSU's Kellogg Biological Station in Hickory Corners. "This is of significant conservation importance given the radical expansion in solar energy development and the strong negative impacts of ecological traps on animal populations."

Using nonpolarizing white grids, he adds, demonstrates a novel approach to reducing the attractiveness of a false habitat by applying what biologists call habitat fragmentation. That is an effect that usually is harmful to species, but in this case promises to solve a conservation problem.

Robertson's team estimates that adding white markings to solar cells might reduce their ability to collect solar energy by perhaps 1.8 percent, depending on the amount of space the strips cover.

Conventional solar cells share a problem with glass-clad buildings and other expanses of shiny dark surfaces – even vehicles. Reflected sunlight becomes polarized, or aligned in a single, often horizontal plane, which is how at least 300 species of insect recognize the surface of water bodies to lay their eggs.

When species such as mayflies and caddis flies mistake shiny dark surfaces for water, they set themselves up for reproductive failure and often become easy targets for predators, Robertson and colleagues noted in a recent online article in the journal Conservation Biology. Local population collapse could be a result, with cascading impacts on predators and other species up the food chain.

Humans typically recognize reflected sunlight as glare, which polarized sunglasses overcome by filtering the horizontal waves through vertically polarized lenses.

Robertson conducted his research in Hungary with scientists associated with Eotvos University in Budapest and Szent Istvan University in Godollo, Hungary. Their work was supported by the U.S. Department of Energy's Great Lakes Bioenergy Research Center and the Hungarian Science Foundation.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:
http://www.ur.msu.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>