Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sodium channels evolved before animals' nervous systems, research shows

18.05.2011
An essential component of animal nervous systems—sodium channels—evolved prior to the evolution of those systems, researchers from The University of Texas at Austin have discovered.

"The first nervous systems appeared in jellyfish-like animals six hundred million years ago or so," says Harold Zakon, professor of neurobiology, "and it was thought that sodium channels evolved around that time. We have now discovered that sodium channels were around well before nervous systems evolved."

Zakon and his coauthors, Professor David Hillis and graduate student Benjamin Liebeskind, published their findings this week in PNAS.

Nervous systems and their component neuron cells were a key innovation in the evolution of animals, allowing for communication across vast distances between cells in the body and leading to sensory perception, behavior and the evolution of complex animal brains.

Sodium channels are an integral part of a neuron's complex machinery. The channels are like floodgates lodged throughout a neuron's levee-like cellular membrane. When the channels open, sodium floods through the membrane into the neuron, and this generates nerve impulses.

Zakon, Hillis and Liebeskind discovered the genes for such sodium channels hiding within an organism that isn't even made of multiple cells, much less any neurons. The single-celled organism is a choanoflagellate, and it is distantly related to multi-cellular animals such as jellyfish and humans.

The researchers then constructed evolutionary trees, or phylogenies, showing the relationship of those genes in the single-celled choanoflagellate to multi-cellular animals, including jellyfish, sponges, flies and humans.

Because the sodium channel genes were found in choanoflagellates, the scientists propose that the genes originated not only before the advent of the nervous system, but even before the evolution of multicellularity itself.

"These genes were then co-opted by the nervous systems evolving in multi-cellular animals," says Hillis, the Alfred W. Roark Centennial Professor in Natural Sciences. "This study shows how complex traits, such as the nervous system, can evolve gradually, often from parts that evolved for other purposes."

"Evolutionarily novel organs do not spring up from nowhere," adds Zakon, "but from pre-existing genes that were likely doing something else previously."

Liebeskind, a graduate student in the university's ecology, evolution and behavior program, is directing his next research efforts toward understanding what the sodium channels do in choanoflagellates.

Harold Zakon | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>