Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapshots of active photosynthesis

04.06.2012
Working with researchers in the US and Germany, Johannes Messinger at Umeå University is opening new avenues to understand photosynthesis and create artificial photosynthesis.
Using x-ray analysis, they have managed to see the structure of molecules under conditions where photosynthesis can occur, and they have also found that calcium plays a critical role in decomposing water.

The solar energy reaching the earth is 5,000 times greater than all energy consumption in the world. To be able to exploit this source of energy and store it would help solve humans’ more and more acute energy problems.

Two major research projects at Umeå University are devoted to developing artificial photosynthesis by imitating plants’ extremely successful way of making use of energy from the sun. Both projects (“solar fuels” and “artificial leaf”) are directed by Johannes Messinger, a professor at the Department of Chemistry, Umeå University.

To be able to create an “artificial leaf,” researchers need to study the ingenious system that plants have used for millions of years on earth. We need to answer two crucial questions: What molecules are necessary to break down water in plant photosynthesis? What is their role, that is, how do they function and when?

In collaboration with American and German colleagues (there are a total of 36 authors of the publication), Johannes Messinger has devised a tool to investigate plant photosynthesis systems while they are active. Using ultra-short x-ray flashes, they have succeeded in performing structural analyses of isolated photosynthesis molecules from plant photosystem II at room temperature. The movement of the atoms was registered for a period of 50 femtoseconds (10-15 seconds). The equipment used, an x-ray free-electron laser, is located at Stanford University in the US.

Normally the structure of molecules is determined by using x-ray flashes in frozen samples. But because the x-ray flashes used in this experiment are so brief, they do not last long enough to disrupt the photosystem during measurement. This opens new possibilities of discovering structures and studying how the system reacts in the leaf under natural conditions when they are actively carrying out photosynthesis.

“Our objective is to study how oxygen atoms form a bridge to create oxygen molecules when water is broken down. Until now, it has been impossible to study this phase of photosynthesis in detail,” says Johannes Messinger.

In his efforts to construct an artificial leaf that can convert water to hydrogen and oxygen, the Umeå scientist, together with collaborative partners at the Max Planck Institute for Bioinorganic Chemistry, have discovered another building block. It is already known that calcium ions are involved in decomposing water and that a system that has no calcium cannot produce oxygen.
But the researchers now wanted to find out whether calcium is necessary to keep the structure of the photosystem stable (especially manganese ions) or whether calcium is needed in the reaction itself.

The research team managed to remove the calcium ions from the whole molecule complex and then study the structure using EPR spectroscopy, electron paramagnetic resonance.

“We could see that the molecule complex, which consists of four manganese ions held together by five oxygen atoms, did not change its structure after we had removed the calcium ions. This indicates that calcium must play an extremely important role in the water decomposition reaction,” says Johannes Messinger.

The new research findings are now being published in two highly prestigious journals. Proceedings of the National Academy of Sciences is publishing the major advances in ultra-rapid x-ray studies, and in Journal of Biological Chemistry, Johannes Messinger is a co-author of the article on the role of calcium in photosynthesis.

Original publications:1. Jan Kern, et. al.: Room Temperature Femtosecond X-ray Diffraction of Photosystem II Microcrystals. Proceedings of the National Academy of Sciences of the United States of America, PNAS

2. Thomas Lohmiller, Nicholas Cox, Ji-Hu Su, Johannes Messinger, Wolfgang Lubitz: The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal.
J. Biol. Chem. May 1, 2012, doi:10.1074/jbc.M112.365288

For more information, please contact:Johannes Messinger
Phone: +46 (0)90-786 59 33
E-mail: johannes.messinger@chem.umu.se

Ingrid Söderbergh | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>