Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snail shell coiling programmed by protein patterning

28.05.2013
Snail shells coil in response to an lopsided protein gradient across their shell mantles, finds research in BioMed Central's open access journal EvoDevo. In contrast the shell mantle of limpets, whose shells do not coil, have a symmetrical pattern of the protein Decapentaplegic (Dpp).

There are many hundreds of different kinds of gastropods (slugs snail and limpets) - second only in number of species to insects. They have adapted to live on land as well as in fresh water and marine environments, and have altered their physiology to survive in different habitats and to exploit different niches. The ancestral snail is thought to have had a coiled shell but during evolution some snails have lost their shells to become slugs, and some, limpets and false limpets, have independently lost the ability to coil their shells.

In order to find out why some gastropods have straight and some have coiled shells researchers from the University of Tokyo looked at the pattern of Dpp during shell growth. Dpp was first identified in fruit flies where it is necessary for the correct development of limbs, wings and other organs – decapentaplegic describes the 15 things missing in the absence of the gene dpp. Dpp is also found in the shell gland of gastropods, an early structure which begins to form a developing shell. However its presence in the mantle, which takes over shell production as the animal develops, was unknown.

In all four animals tested, limpets Patella vulgata and Nipponacmea fuscoviridis, and the right-hand coiled pond snail Lymnaea stagnalis along with a sinistral coiled lab-developed snail, dpp expression matched shell shape. There was also a Dpp protein gradient spreading away from this which was also symmetrical in limpets but had left/right asymmetry for the pond snails, matching the handedness of shell coiling.

Keisuke Shimizu, who led this study, commented, "This molecular mechanism driving for shell coiling persists from early developmental stages though adult life as the shell is replaced. It also provides an explanation for how shell coiling has been lost several times during the evolution of gastropods by the relatively easy loss of asymmetric Dpp."

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Mob: +44 (0) 778 698 1967
Notes to Editors
1. Left-right asymmetric expression of dpp in the mantle of gastropods correlates with asymmetric shell coiling
Keisuke Shimizu, Minoru Iijima, Davin HE Setiamarga, Isao Sarashina, Tetsuhiro Kudoh, Takahiro Asami, Edi Gittenberger and Kazuyoshi Endo

EvoDevo 2013, 4:15 doi:10.1186/2041-9139-4-15

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

4. The Sunday Times University of the Year 2012-13, the University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 7th in The Sunday Times University Guide, 10th in the UK in The Times Good University Guide 2012 and 10th in the Guardian University Guide.

Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>