Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Smell of Danger

29.06.2011
Rodent olfaction and the chemistry of instinct

The mechanics of instinctive behavior are mysterious. Even something as simple as the question of how a mouse can use its powerful sense of smell to detect and evade predators, including species it has never met before, has been almost totally unknown at the molecular level until now.

David Ferrero and Stephen Liberles, neuroscientists at Harvard Medical School, have discovered a single compound found in high concentrations in the urine of carnivores that triggers an instinctual avoidance response in mice and rats. This is the first time that scientists have identified a chemical tag that would let rodents sense carnivores in general from a safe distance. The authors write that understanding the molecular basis of predator odor recognition by rodents will provide crucial tools to study the neural circuitry associated with innate behavior.

Their findings were published online in the Proceedings of the National Academy of Science on June 20, 2011.

The search began in 2006, when Stephen Liberles, now Assistant Professor of Cell Biology at Harvard Medical School, was working as a post-doc in the lab of Linda Buck. Buck was part of the team that won the Nobel Prize for identifying the receptors that allow olfactory neurons to detect odors. While in her lab, Liberles identified a new type of olfactory receptor, the trace amine-associated receptors (TAARs).

Mice have about 1200 kinds of odor receptors, and 14 kinds of TAARs. In comparison, humans —who rely more on vision than smell— have about 350 odor receptors and five TAARs.

Liberles’s initial findings indicated that several of the TAARs detect chemicals found in mouse urine, including a chemical with enriched production by males. He wondered, could TAARs (which appear to have originally evolved from neurotransmitter receptors that mediate behavior and emotion) play a role in the social behavior of rodents? What other kinds of naturally occurring odors might they be able to detect?

In Liberles’s lab at Harvard Medical School, graduate student David Ferrero began a search for other natural compounds that were detected by the TAARs. Working with commercially available predator and prey urine (used by gardeners to keep pests out of their crops and by hunters to mask their own scent or as lures for prey), Ferrero discovered that one of the 14 TAARs, TAAR4, detected the odor of several carnivores.

It seemed they had found a kairomone, a chemical that works like a pheromone, except that it communicates between members of different species instead of members of the same species. Prior to this discovery, the only known rodent-carnivore kairomones were a volatile compound produced by foxes, but not in that of other predators, and two non-volatile compounds produced by cats and rats (which prey on mice). Volatile compounds aerosolize and can be smelled at great distances; non-volatile compounds need to be sniffed more directly, something that would not be helpful in avoiding a predator directly but rather their terrain.

“One of the things that’s really new here is that this is a generalized predator kairomone that’s volatile,” said Ferrero.

For rodents, it’s the smell of danger.

Ferrero identified the compound that activates TAAR4 as 2-phenylethylamine, a product of protein metabolism. He then obtained specimens from 38 species of mammals and found elevated levels of 2-phenylethylamineby 18 of 19 species of carnivores, but not by non-carnivores (including rabbits, deer, primates, and a giraffe).

“It’s been known so long that predator odors are great rodent deterrents, but we’ve discovered one molecule that’s a key part of this ecological relationship,” Ferrero said.

In a series of behavior tests, rats and mice showed a clear, innate avoidance to the smell of 2-phenylethylamine. The behavioral studies were repeated using a carnivore samples that had been depleted of 2-phenylethylamine. Rats failed to show full avoidance of the depleted carnivore urine, indicating that 2-phenylethylamine is a key trigger for predator avoidance.

Lacking the gene for TAAR4, humans can’t experience anything like what rodents do when they smell 2-phenylethylamine. To us, it has a mildly inoffensive odor. But trimethylamine, a related organic compound that activates TAAR5, a receptor found in humans, is deeply repugnant to people.

What happens between the receptors and the parts of the brain that trigger that avoidance behavior remains a mystery, one with direct medical relevance.

According to Liberles, “In humans, the parts of the brain that deal with likes and dislikes go awry in many diseases, like drug addiction, and predator odor responses have been used to model stress and anxiety disorders. Going from chemicals to receptors to neural circuits to behaviors is a Holy Grail of neuroscience.”

“The neural circuits are like a black box, but here we have identified a chemical stimulant and a candidate receptor that trigger one behavior,” Ferrero said. “We feel this is an important first step to understanding the neural circuitry of innate behavior.”

This research was funded by the National Institute On Deafness And Other Communication Disorders.

Written by Jake Miller

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>