Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Smart Egg: Birds Sense Day Length and Change Development

12.07.2012
This is one smart egg. Talk about adjusting your internal clock. New research at North Dakota State University, Fargo, shows that some chicks can sense day length, even while they are still in the egg, which in turn, affects how they develop.

Dr. Mark E. Clark, associate professor, and Dr. Wendy Reed, head of biological sciences at NDSU, found in their study that embryos in eggs appear to sense external environments and adjust how they develop. The research is being published in Functional Ecology, a British Ecological Journal, available in early view online.

Franklin’s gull is a bird that migrates long distances and requires precise timing. It winters along the west coast of South America until returning to the prairie wetlands of North America, where it nests in large colonies come springtime. The dark hood, gray wings and pink-tinted breast are a harbinger of spring to the people of the Northern Great Plains, who affectionately call it the prairie rose gull. Soon after large wetlands thaw, Franklin’s gulls arrive to build floating nests from wetland vegetation to hold three green-and-black speckled eggs.

Inside these dark eggs, the developing chicks also sense spring days. “The growing embryos integrate signals from the nutrients provided to eggs by mothers with the amount of daylight,” said Dr. Clark. “The signals let the chick know whether the egg was laid at the beginning, or at the end of the nesting period.”

Clark and Reed note that chicks from eggs produced at the beginning of nesting take longer to hatch, but are larger than chicks from eggs laid at the end of nesting. Contrast that with eggs laid at the end of the nesting period, which hatch in less time, but at a smaller size.

“Chicks hatching later in the season have less time to grow, less time to become independent, and less time for flying lessons before they must migrate to South America in the fall,” said Dr. Reed.

According to Dr. Clark, data indicate embryos in late season eggs appear to be sensing external environments and adjusting their development. These changes in development time and size may be important for chicks to successfully migrate.

Many birds, including Franklin’s gulls, are arriving earlier on their breeding grounds. “This research suggests that the impacts of changing seasonal signals have far reaching effects on bird biology, including chick development,” said Dr. Clark.

Researchers evaluated the ability of avian embryos to integrate cues of season from photoperiod and maternal environments present in eggs to produce season variation among phenotypes among Franklin’s gull (Leucophaeus pipixcan) hatchlings.

Field research was conducted at the J. Clark Salyer National Wildlife Refuge and Lake Alice National Wildlife Refuge in north-central North Dakota along the Souris River.

Researchers collected early and late season eggs, separating some into component parts and incubating others for short or long photoperiods. Upon hatching, chicks were evaluated for size and yolk sac reserves.

Results of the study show that hatchling size is sensitive both to egg contents provided by mothers and to photoperiod, and development time increases across the season. When cues of season from eggs are mismatched with cues from photoperiod, alternate phenotypes are created.

Clark and Reed also found that seasonal variation in egg size, yolk, albumen or shell content of the eggs does not account for the seasonal maternal egg effect on hatchling size. “We expect our results to initiate new studies on how vertebrate embryos integrate environmental cues with maternal effects and offspring responses to optimize the expression of offspring phenotype,” said Clark.

Previous NDSU graduate students who participated in the research include Shawn Weissenfluh and Emily Davenport-Berg. Other NDSU students who assisted in the research include Nathaniel Cross, Peter Martin, Dan Larsen, Michelle Harviell and Andrew Nygaard, along with Petar Miljkovic from Grinnell College.

Research funding was provided by the National Science Foundation (IOS-0445848), the North Dakota Game and Fish Department and the U.S. Fish and Wildlife Service.

North Dakota State University, Fargo, is a student focused, land-grant, research university – an economic engine that educates students, conducts primary research, creates new knowledge and advances technology. NDSU is among the top 108 universities in the country with very high research activity, as determined by the Carnegie Commission on Higher Education.

A British Ecological Society journal, Functional Ecology publishes high impact papers on organismal ecology, including physiological, behavioural and evolutionary ecology.

Carol Renner | Newswise Science News
Further information:
http://www.ndsu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>