Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One Smart Egg: Birds Sense Day Length and Change Development

This is one smart egg. Talk about adjusting your internal clock. New research at North Dakota State University, Fargo, shows that some chicks can sense day length, even while they are still in the egg, which in turn, affects how they develop.

Dr. Mark E. Clark, associate professor, and Dr. Wendy Reed, head of biological sciences at NDSU, found in their study that embryos in eggs appear to sense external environments and adjust how they develop. The research is being published in Functional Ecology, a British Ecological Journal, available in early view online.

Franklin’s gull is a bird that migrates long distances and requires precise timing. It winters along the west coast of South America until returning to the prairie wetlands of North America, where it nests in large colonies come springtime. The dark hood, gray wings and pink-tinted breast are a harbinger of spring to the people of the Northern Great Plains, who affectionately call it the prairie rose gull. Soon after large wetlands thaw, Franklin’s gulls arrive to build floating nests from wetland vegetation to hold three green-and-black speckled eggs.

Inside these dark eggs, the developing chicks also sense spring days. “The growing embryos integrate signals from the nutrients provided to eggs by mothers with the amount of daylight,” said Dr. Clark. “The signals let the chick know whether the egg was laid at the beginning, or at the end of the nesting period.”

Clark and Reed note that chicks from eggs produced at the beginning of nesting take longer to hatch, but are larger than chicks from eggs laid at the end of nesting. Contrast that with eggs laid at the end of the nesting period, which hatch in less time, but at a smaller size.

“Chicks hatching later in the season have less time to grow, less time to become independent, and less time for flying lessons before they must migrate to South America in the fall,” said Dr. Reed.

According to Dr. Clark, data indicate embryos in late season eggs appear to be sensing external environments and adjusting their development. These changes in development time and size may be important for chicks to successfully migrate.

Many birds, including Franklin’s gulls, are arriving earlier on their breeding grounds. “This research suggests that the impacts of changing seasonal signals have far reaching effects on bird biology, including chick development,” said Dr. Clark.

Researchers evaluated the ability of avian embryos to integrate cues of season from photoperiod and maternal environments present in eggs to produce season variation among phenotypes among Franklin’s gull (Leucophaeus pipixcan) hatchlings.

Field research was conducted at the J. Clark Salyer National Wildlife Refuge and Lake Alice National Wildlife Refuge in north-central North Dakota along the Souris River.

Researchers collected early and late season eggs, separating some into component parts and incubating others for short or long photoperiods. Upon hatching, chicks were evaluated for size and yolk sac reserves.

Results of the study show that hatchling size is sensitive both to egg contents provided by mothers and to photoperiod, and development time increases across the season. When cues of season from eggs are mismatched with cues from photoperiod, alternate phenotypes are created.

Clark and Reed also found that seasonal variation in egg size, yolk, albumen or shell content of the eggs does not account for the seasonal maternal egg effect on hatchling size. “We expect our results to initiate new studies on how vertebrate embryos integrate environmental cues with maternal effects and offspring responses to optimize the expression of offspring phenotype,” said Clark.

Previous NDSU graduate students who participated in the research include Shawn Weissenfluh and Emily Davenport-Berg. Other NDSU students who assisted in the research include Nathaniel Cross, Peter Martin, Dan Larsen, Michelle Harviell and Andrew Nygaard, along with Petar Miljkovic from Grinnell College.

Research funding was provided by the National Science Foundation (IOS-0445848), the North Dakota Game and Fish Department and the U.S. Fish and Wildlife Service.

North Dakota State University, Fargo, is a student focused, land-grant, research university – an economic engine that educates students, conducts primary research, creates new knowledge and advances technology. NDSU is among the top 108 universities in the country with very high research activity, as determined by the Carnegie Commission on Higher Education.

A British Ecological Society journal, Functional Ecology publishes high impact papers on organismal ecology, including physiological, behavioural and evolutionary ecology.

Carol Renner | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>