Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Smart Egg: Birds Sense Day Length and Change Development

12.07.2012
This is one smart egg. Talk about adjusting your internal clock. New research at North Dakota State University, Fargo, shows that some chicks can sense day length, even while they are still in the egg, which in turn, affects how they develop.

Dr. Mark E. Clark, associate professor, and Dr. Wendy Reed, head of biological sciences at NDSU, found in their study that embryos in eggs appear to sense external environments and adjust how they develop. The research is being published in Functional Ecology, a British Ecological Journal, available in early view online.

Franklin’s gull is a bird that migrates long distances and requires precise timing. It winters along the west coast of South America until returning to the prairie wetlands of North America, where it nests in large colonies come springtime. The dark hood, gray wings and pink-tinted breast are a harbinger of spring to the people of the Northern Great Plains, who affectionately call it the prairie rose gull. Soon after large wetlands thaw, Franklin’s gulls arrive to build floating nests from wetland vegetation to hold three green-and-black speckled eggs.

Inside these dark eggs, the developing chicks also sense spring days. “The growing embryos integrate signals from the nutrients provided to eggs by mothers with the amount of daylight,” said Dr. Clark. “The signals let the chick know whether the egg was laid at the beginning, or at the end of the nesting period.”

Clark and Reed note that chicks from eggs produced at the beginning of nesting take longer to hatch, but are larger than chicks from eggs laid at the end of nesting. Contrast that with eggs laid at the end of the nesting period, which hatch in less time, but at a smaller size.

“Chicks hatching later in the season have less time to grow, less time to become independent, and less time for flying lessons before they must migrate to South America in the fall,” said Dr. Reed.

According to Dr. Clark, data indicate embryos in late season eggs appear to be sensing external environments and adjusting their development. These changes in development time and size may be important for chicks to successfully migrate.

Many birds, including Franklin’s gulls, are arriving earlier on their breeding grounds. “This research suggests that the impacts of changing seasonal signals have far reaching effects on bird biology, including chick development,” said Dr. Clark.

Researchers evaluated the ability of avian embryos to integrate cues of season from photoperiod and maternal environments present in eggs to produce season variation among phenotypes among Franklin’s gull (Leucophaeus pipixcan) hatchlings.

Field research was conducted at the J. Clark Salyer National Wildlife Refuge and Lake Alice National Wildlife Refuge in north-central North Dakota along the Souris River.

Researchers collected early and late season eggs, separating some into component parts and incubating others for short or long photoperiods. Upon hatching, chicks were evaluated for size and yolk sac reserves.

Results of the study show that hatchling size is sensitive both to egg contents provided by mothers and to photoperiod, and development time increases across the season. When cues of season from eggs are mismatched with cues from photoperiod, alternate phenotypes are created.

Clark and Reed also found that seasonal variation in egg size, yolk, albumen or shell content of the eggs does not account for the seasonal maternal egg effect on hatchling size. “We expect our results to initiate new studies on how vertebrate embryos integrate environmental cues with maternal effects and offspring responses to optimize the expression of offspring phenotype,” said Clark.

Previous NDSU graduate students who participated in the research include Shawn Weissenfluh and Emily Davenport-Berg. Other NDSU students who assisted in the research include Nathaniel Cross, Peter Martin, Dan Larsen, Michelle Harviell and Andrew Nygaard, along with Petar Miljkovic from Grinnell College.

Research funding was provided by the National Science Foundation (IOS-0445848), the North Dakota Game and Fish Department and the U.S. Fish and Wildlife Service.

North Dakota State University, Fargo, is a student focused, land-grant, research university – an economic engine that educates students, conducts primary research, creates new knowledge and advances technology. NDSU is among the top 108 universities in the country with very high research activity, as determined by the Carnegie Commission on Higher Education.

A British Ecological Society journal, Functional Ecology publishes high impact papers on organismal ecology, including physiological, behavioural and evolutionary ecology.

Carol Renner | Newswise Science News
Further information:
http://www.ndsu.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>