Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules - large effect: How cancer cells ensure their survival

17.12.2008
A team of researchers headed by Professor Roland Stauber of Mainz University's ENT clinic has identified a molecular mechanism used by cancer cells to "defend" themselves against chemotherapeutics in an attempt to ensure their own survival.

Both the messenger substance nitrogen monoxide (NO) and the protein survivin play a role in this. The results of the study, carried out in patients with head-neck tumors, recently appeared in the International Journal of Cancer (Fetz et al., 2008).

In another publication in the journal Cancer Research (Engels et al., 2008), which appeared in the summer of this year, researchers had already reported the discovery of a similar mechanism in ovarian cancer. This raises the possibility that the "NO/survivin axis" may be a common denominator that plays a role in a large number of different types of cancer.

Every year, at least 10,000 people develop malignant cancer of the head-neck region. Despite a positive outcome after surgery, radiotherapy, and/or chemotherapy, the majority of these patients suffer a relapse after initial treatment, with the development of distant metastases being a frequent complication. The molecular causes of the development and progression of head-neck cancers and their response to treatment are still not yet adequately understood.

In the recent comprehensive study, researchers from the University Hospital of Johannes Gutenberg University Mainz were for the first time able to identify the molecular mechanism by which the messenger substance nitrogen monoxide (NO) contributes towards the growth and the resistance to treatment of head-neck cancers. NO plays a role in numerous physiological but also pathological processes: Thus, for example, most cancer cells produce increased amounts of NO and in result appear to gain a survival advantage. Until recently, it was not clear how they do this. The researchers in Mainz have now managed to demonstrate that NO or the NO-producing protein - known as iNOS in medical jargon - induces the synthesis of another protein called survivin. The name survivin is derived from the verb "to survive", which also offers a clue to its function: survivin was only recently identified by researchers as one of the central factors important with regard to the occurrence of relapses and the resistance of head-neck cancers to treatment, as it prevents the programmed death (apoptosis) of cancerous cells. (Engels et al., 2007) The increased formation of iNOS - and therefore the messenger substance NO - results in activation of certain signal pathways in the cancer cells, which ultimately leads to an increase in the production of survivin. Its properties as an inhibitor of programmed cell death are in turn exploited by the cancer cells to protect themselves against attack by chemo- or radiotherapy so that cancer cells employ, as it were, the "iNOS/survivin" axis as a survival aid.

"This new molecular understanding of the defense mechanisms of cancer cells now allows us to focus on these defensive mechanisms," reports Professor Roland Stauber, head of the Department of Molecular and Cellular Oncology. The results of tests conducted on cultured cancer cells within the framework of this study have been promising, as they have shown that the combined use of chemical iNOS inhibitors and a blockade of survivin synthesis can efficiently kill off tumor cells.

The researchers are even one step ahead: "We already managed to demonstrate earlier this year that this is a mechanism that is not simply restricted to head-neck cancers when we discovered the significance of the iNOS/survivin axis in ovarian cancer," explained Professor Stauber. "These results confirm our multidisciplinary approach, in which we conduct basic research to identify mechanisms the effects of which can then be verified in a range of tumor entities in close co-operation with various medical disciplines. This also allows us to quickly and effectively identify mechanisms that are not restricted to a specific indication. This ultimately benefits patients, as the results of the initial research benefit them sooner."

The challenge for the clinicians and researchers now lies in testing the efficacy and safety of this strategy in tumor models, thus better enabling them to assess the potential clinical benefits of the approach. "These complex investigations can, however, only be carried out with the help of national sponsors," pointed out Professor Stauber. "We therefore hope that we will continue to receive support for our indication-overlapping research strategy in the future."

Prof. Dr. Roland H. Stauber | alfa
Further information:
http://www.stauber-lab.de
http://www.uni-mainz.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>