Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecules - large effect: How cancer cells ensure their survival

17.12.2008
A team of researchers headed by Professor Roland Stauber of Mainz University's ENT clinic has identified a molecular mechanism used by cancer cells to "defend" themselves against chemotherapeutics in an attempt to ensure their own survival.

Both the messenger substance nitrogen monoxide (NO) and the protein survivin play a role in this. The results of the study, carried out in patients with head-neck tumors, recently appeared in the International Journal of Cancer (Fetz et al., 2008).

In another publication in the journal Cancer Research (Engels et al., 2008), which appeared in the summer of this year, researchers had already reported the discovery of a similar mechanism in ovarian cancer. This raises the possibility that the "NO/survivin axis" may be a common denominator that plays a role in a large number of different types of cancer.

Every year, at least 10,000 people develop malignant cancer of the head-neck region. Despite a positive outcome after surgery, radiotherapy, and/or chemotherapy, the majority of these patients suffer a relapse after initial treatment, with the development of distant metastases being a frequent complication. The molecular causes of the development and progression of head-neck cancers and their response to treatment are still not yet adequately understood.

In the recent comprehensive study, researchers from the University Hospital of Johannes Gutenberg University Mainz were for the first time able to identify the molecular mechanism by which the messenger substance nitrogen monoxide (NO) contributes towards the growth and the resistance to treatment of head-neck cancers. NO plays a role in numerous physiological but also pathological processes: Thus, for example, most cancer cells produce increased amounts of NO and in result appear to gain a survival advantage. Until recently, it was not clear how they do this. The researchers in Mainz have now managed to demonstrate that NO or the NO-producing protein - known as iNOS in medical jargon - induces the synthesis of another protein called survivin. The name survivin is derived from the verb "to survive", which also offers a clue to its function: survivin was only recently identified by researchers as one of the central factors important with regard to the occurrence of relapses and the resistance of head-neck cancers to treatment, as it prevents the programmed death (apoptosis) of cancerous cells. (Engels et al., 2007) The increased formation of iNOS - and therefore the messenger substance NO - results in activation of certain signal pathways in the cancer cells, which ultimately leads to an increase in the production of survivin. Its properties as an inhibitor of programmed cell death are in turn exploited by the cancer cells to protect themselves against attack by chemo- or radiotherapy so that cancer cells employ, as it were, the "iNOS/survivin" axis as a survival aid.

"This new molecular understanding of the defense mechanisms of cancer cells now allows us to focus on these defensive mechanisms," reports Professor Roland Stauber, head of the Department of Molecular and Cellular Oncology. The results of tests conducted on cultured cancer cells within the framework of this study have been promising, as they have shown that the combined use of chemical iNOS inhibitors and a blockade of survivin synthesis can efficiently kill off tumor cells.

The researchers are even one step ahead: "We already managed to demonstrate earlier this year that this is a mechanism that is not simply restricted to head-neck cancers when we discovered the significance of the iNOS/survivin axis in ovarian cancer," explained Professor Stauber. "These results confirm our multidisciplinary approach, in which we conduct basic research to identify mechanisms the effects of which can then be verified in a range of tumor entities in close co-operation with various medical disciplines. This also allows us to quickly and effectively identify mechanisms that are not restricted to a specific indication. This ultimately benefits patients, as the results of the initial research benefit them sooner."

The challenge for the clinicians and researchers now lies in testing the efficacy and safety of this strategy in tumor models, thus better enabling them to assess the potential clinical benefits of the approach. "These complex investigations can, however, only be carried out with the help of national sponsors," pointed out Professor Stauber. "We therefore hope that we will continue to receive support for our indication-overlapping research strategy in the future."

Prof. Dr. Roland H. Stauber | alfa
Further information:
http://www.stauber-lab.de
http://www.uni-mainz.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>