Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small-molecule inhibitor uncovers protein role in melanoma cell migration

16.08.2010
A nuclear protein of previously unknown function has been shown to regulate the migration of tumor cells in the spread of melanoma, the most deadly form of skin cancer.

Researchers at the RIKEN Advanced Science Institute made the discovery by means of a small-molecule inhibitor they identified using a powerful new chemical array screening technique.

Characterizing the functions of proteins in the cell, whose role in mediating complex metabolic and signaling networks is central to cellular biochemistry, is essential for developing new medicines and treatments. Small-molecule inhibitors have proven an effective tool for doing this, binding to target proteins and disrupting their normal function in order to reveal their network of cellular interactions.

Human pirin is a nuclear protein known to play a role in a variety of biological processes, yet one with a function which remains unclear. To identify inhibitors for this protein, the team used a technique they developed called chemical array screening, in which many small-compound molecules are immobilized onto glass slides and incubated with the target protein. From more than 20,000 molecules screened, the team identified one they named triphenyl compound A (TPh A) that binds to pirin with high affinity.

Using X-ray crystallography, the team determined how TPh A binds to pirin at a resolution of 2.35 Å. They went on to show that TPh A inhibits interaction between pirin and its binding partner, Bcl3, and that it also inhibits the migration of melanoma cells by reducing expression of the tumor mobility protein SNAI2.

Reported in Nature Chemical Biology, the findings establish for the first time the role of pirin in melanoma cell migration and elucidate its structure through its binding with TPh A. They also demonstrate the power of chemical array screening, whose further application promises to greatly expand our understanding of proteins and their interactions in the cell.

For more information, please contact:

Dr. Hiroyuki Osada
Chemical Biology Core Facility, Advanced Computational Sciences Department
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-9542 / Fax: +81-(0)48-467-4669
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference
Isao Miyazaki, Siro Simizu, Hideo Okumura, Satoshi Takagi and Hiroyuki Osada. A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nature Chemical Biology (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>