Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small non-coding RNAs could be warning signs of cancer

17.02.2014
Small non-coding RNAs can be used to predict if individuals have breast cancer conclude researchers who contribute to The Cancer Genome Atlas project.

The results, which are published in EMBO reports, indicate that differences in the levels of specific types of non-coding RNAs can be used to distinguish between cancerous and non-cancerous tissues. These RNAs can also be used to classify cancer patients into subgroups of individuals that have different survival outcomes.

Small non-coding RNAs are RNA molecules that do not give rise to proteins but which may have other important functions in the cell. “For many years, small non-coding RNAs near transcriptional start sites have been regarded as ‘transcriptional noise’ due to their apparent chaotic distribution and an inability to correlate these molecules with known functions or disease,” explains Steven Jones, one of the lead authors of the study, a professor at Simon Fraser University and the University of British Columbia, and a distinguished scientist at the BC Cancer Agency.

“By using a computational approach to analyze small RNA sequence information that we generated as part of The Cancer Genome Atlas project, we have been able to filter through this noise to find clinically useful information,” adds Jones. “The data from our experiments show that genome-wide changes in the expression levels of small non-coding RNAs in the first exons of protein-coding genes are associated with breast cancer.”

The scientists were able to distinguish between the many different small non-coding RNAs that are found near the transcriptional start sites of genes in healthy individuals and patients with breast cancer (in this case, breast invasive carcinoma). They mapped these RNA molecules to specific locations on the DNA sequence and looked for correlations between the non-coding RNAs that were strongly expressed and the disease status of the patients from whom the tissue samples were isolated. The researchers then tested if the expression of the small RNAs in genomic locations that they were able to identify could be used to predict the presence of disease in another group of tissue samples obtained from patients known to have breast cancer. The test efficiently predicted the correct disease status for the samples in the new study group.

“The potential to predict cancer status is restricted to only a subset of the many small non-coding RNAs found near transcription start sites of the genes. What’s more, these RNA locations are highly enriched with CpG islands,” says Athanasios Zovoilis, the first author of the study. CpG islands are genomic regions that contain a high frequency of cytosine and guanine. The presence of these RNAs in these islands may implicate their involvement with DNA methylation processes and the onset of disease but additional experiments are needed to explore and prove this link.

“This is the first time that small non-coding RNAs near the transcription start site of genes have been associated with disease,” says Jones. “Further work is required but based on our data we believe there is considerable diagnostic potential for these small non-coding RNAs as a predictive tool for cancer. In addition, they may help us understand better the mechanisms underlying oncogenesis at the epigenetic level and lead to potential new drugs employing small non-coding RNAs.” The researchers also note that this class of small non-coding RNAs may be useful in predicting the existence of other types of cancer or disease.

The generation of data by The Cancer Genome Atlas project, which now provides access to large amounts of sequencing information for diseased and normal tissues, made the work possible. The Cancer Genome Atlas is now one of the largest resources for small non-coding RNAs in existence.

The expression level of small non-coding RNAs derived from the first exon of protein coding genes is predictive of cancer status

Athanasios Zovoilis, Andrew J Mungall, Richard Moore, Richard Varhol,
Andy Chu, Tina Wong, Marco Marra, Steven JM Jones
Read the paper:
doi: 10.1002/embr.201337950
The paper will be available online from 14:00 Central European Time on 17 February. Alternatively send an e-mail to barry.whyte@embo.org

Further information on EMBO reports is available at embor.embopress.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Nonia Pariente
Senior Editor, EMBO reports
Tel: +49 6221 8891 305
pariente@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO Communications
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>