Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small non-coding RNAs could be warning signs of cancer

17.02.2014
Small non-coding RNAs can be used to predict if individuals have breast cancer conclude researchers who contribute to The Cancer Genome Atlas project.

The results, which are published in EMBO reports, indicate that differences in the levels of specific types of non-coding RNAs can be used to distinguish between cancerous and non-cancerous tissues. These RNAs can also be used to classify cancer patients into subgroups of individuals that have different survival outcomes.

Small non-coding RNAs are RNA molecules that do not give rise to proteins but which may have other important functions in the cell. “For many years, small non-coding RNAs near transcriptional start sites have been regarded as ‘transcriptional noise’ due to their apparent chaotic distribution and an inability to correlate these molecules with known functions or disease,” explains Steven Jones, one of the lead authors of the study, a professor at Simon Fraser University and the University of British Columbia, and a distinguished scientist at the BC Cancer Agency.

“By using a computational approach to analyze small RNA sequence information that we generated as part of The Cancer Genome Atlas project, we have been able to filter through this noise to find clinically useful information,” adds Jones. “The data from our experiments show that genome-wide changes in the expression levels of small non-coding RNAs in the first exons of protein-coding genes are associated with breast cancer.”

The scientists were able to distinguish between the many different small non-coding RNAs that are found near the transcriptional start sites of genes in healthy individuals and patients with breast cancer (in this case, breast invasive carcinoma). They mapped these RNA molecules to specific locations on the DNA sequence and looked for correlations between the non-coding RNAs that were strongly expressed and the disease status of the patients from whom the tissue samples were isolated. The researchers then tested if the expression of the small RNAs in genomic locations that they were able to identify could be used to predict the presence of disease in another group of tissue samples obtained from patients known to have breast cancer. The test efficiently predicted the correct disease status for the samples in the new study group.

“The potential to predict cancer status is restricted to only a subset of the many small non-coding RNAs found near transcription start sites of the genes. What’s more, these RNA locations are highly enriched with CpG islands,” says Athanasios Zovoilis, the first author of the study. CpG islands are genomic regions that contain a high frequency of cytosine and guanine. The presence of these RNAs in these islands may implicate their involvement with DNA methylation processes and the onset of disease but additional experiments are needed to explore and prove this link.

“This is the first time that small non-coding RNAs near the transcription start site of genes have been associated with disease,” says Jones. “Further work is required but based on our data we believe there is considerable diagnostic potential for these small non-coding RNAs as a predictive tool for cancer. In addition, they may help us understand better the mechanisms underlying oncogenesis at the epigenetic level and lead to potential new drugs employing small non-coding RNAs.” The researchers also note that this class of small non-coding RNAs may be useful in predicting the existence of other types of cancer or disease.

The generation of data by The Cancer Genome Atlas project, which now provides access to large amounts of sequencing information for diseased and normal tissues, made the work possible. The Cancer Genome Atlas is now one of the largest resources for small non-coding RNAs in existence.

The expression level of small non-coding RNAs derived from the first exon of protein coding genes is predictive of cancer status

Athanasios Zovoilis, Andrew J Mungall, Richard Moore, Richard Varhol,
Andy Chu, Tina Wong, Marco Marra, Steven JM Jones
Read the paper:
doi: 10.1002/embr.201337950
The paper will be available online from 14:00 Central European Time on 17 February. Alternatively send an e-mail to barry.whyte@embo.org

Further information on EMBO reports is available at embor.embopress.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Nonia Pariente
Senior Editor, EMBO reports
Tel: +49 6221 8891 305
pariente@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO Communications
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>