Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slimming aid from the cell laboratory?

10.05.2010
Inflammation enzyme regulates the production of brown fat tissue

Love handles, muffin tops and stomach tires – white fat tissue forms the typical curves in the notorious problem areas to store energy. Exactly the opposite happens in brown fat tissue: Instead of being stored, energy gets transformed into heat. To the dismay of many people, adults have only small amounts of this energy burner. By contrast, babies and animals in hibernation have lots of it in their bodies where it serves for heat regulation.

Researchers know that external influences can stimulate the production of brown fat tissue in animals. If rodents are kept at low temperatures, clusters of brown fat cells form amid the white fat tissue. A DKFZ research team headed by Dr. Stephan Herzig, jointly with colleagues from Munich, Marburg, Frankfurt and Lausanne, has investigated the molecular causes of this phenomenon. They discovered that the production of the COX-2 inflammation enzyme is increased in white fat tissue of mice after exposure to cold temperatures. COX-2 is well known to scientists: It regulates the key step in the biosynthesis of prostaglandins – inflammation-promoting hormones which are also responsible for activating pain.

"Our recent results prove that COX-2 and prostaglandins are crucial for the formation of new brown fat tissue and, thus, also for regulating body weight," said Stephan Herzig summarizing his data. Parallel to the increase in COX-2 production in white fat tissue, there is also a rising level of the protein which biochemically transforms energy into heat and is therefore considered the most important biomarker for brown fat cells. When the investigators switched off COX-2 in the white fat tissue, however, the typical appearance of brown fat cells could no longer be stimulated by the cold.

Even without using cold temperatures the scientists were able to stimulate the formation of brown fat cell clusters in white fat tissue by boosting the COX-2 production in mice using a molecular-biological trick. The body weight of these animals was 20 percent lower than that of normal animals. Even on a calorie-rich diet they did not put on weight.

Previous studies by researchers from Finland suggest that in humans, too, the activity, i.e. heat production of brown fat tissue can be stimulated by regular stays in the cold. Stephan Herzig now plans to investigate whether COX-2 also plays the biochemical key role here. Since the formation of brown fat cells can also be stimulated in the culture dish, Herzig sees a possibility for practical use of his results. His vision is to take white fat tissue from severely obese individuals, to stimulate the formation of brown fat cells using prostaglandins in the culture dish, and then transplant them back to the patient. Thus it would be possible to help people by boosting their energy metabolism and thus making weight loss easier. Scientists estimate that a small amount of about 50 grams of brown fat tissue would be sufficient to increase a person's energy metabolism by 20 percent. This would be equal to a reduction of body weight by 20 kilograms over a period of one year.

Clinical trials with cancer patients have already indirectly revealed that COX-2 has an influence on body weight. Thus, the body weight of patients suffering from severe cancer-related wasting stabilized due to COX-2 inhibiting drugs. But a number of common pain relievers also act by inhibiting COX-2. Does that mean that users have to accept weight gain as a side effect? Herzig has good news: "So far, we have found no evidence suggesting that one has to fear gaining weight from taking these drugs."

A picture is available at the Internet: www.dkfz.de/de/presse/pressemitteilungen/2010/images/Fettzellen.jpg

Picture caption: brown fat cells within white fat tissue
Picture Source: Karin Müller-Decker, Deutsches Krebsforschungszentrum
Alexandros Vegiopoulos, Karin Müller-Decker, Daniela Strzoda, Iris Schmitt, Evgeny Chichelnitsky, Anke Ostertag, Mauricio Berriel Diaz, Jan Rozman, Martin Hrabe de Angelis, Rolf M. Nüsing, Carola W. Meyer, Walter Wahli, Martin Klingenspor und Stephan Herzig: Cyclooxygenase-2 Controls Energy Homeostasis in Mice by de Novo Recruitment of Brown Adipocytes

Science 2010, DOI: 10.1126/science.1186034

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

The world's tiniest first responders

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>