Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skin and Immune System Influence Salt Storage and Regulate Blood Pressure

07.09.2012
High blood pressure is responsible for many cardiovascular diseases that are the leading cause of death in industrialized countries.

High salt intake has long been considered a risk factor, but not every type of high blood pressure is associated with high salt intake. This has puzzled scientists for a long time.

New findings by Professor Jens Titze (Vanderbilt University, USA and the University of Erlangen) now point to previously unknown mechanisms. Accordingly, the skin and the immune system play an important role in the regulation of the sodium balance and hypertension, as he reported at the 1st ECRC Franz Volhard Symposium at the Max Delbrück Center (MDC) on September 7, 2012 in Berlin.

The water and salt balance of the body is of great importance for blood pressure. The decisive factor is the kidney, which regulates how much water is retained in the body and how much is excreted. In this way it regulates the volume of blood and thus influences blood pressure. However, new findings by Professor Titze, one of the leading experts in the field, show that organs and systems of the body that hitherto were not associated with water and salt balance have an influence on blood pressure: the skin and the immune system.

Professor Titze showed that sodium can be stored in the connective tissue of the skin. “The sodium concentration can be higher in the skin than in blood. This means that not only the kidney regulates sodium balance but that there must be additional mechanisms,” the researcher explained. His research group demonstrated that the immune system plays an important role in this mechanism: A specific type of immune cells, the macrophages – literally “big eaters” in Greek – recognize high sodium levels in the skin. They subsequently activate a gene that in turn ensures that the vascular endothelial growth factor (VEGF-C) is released in large amounts into the skin. VEGF-C controls the growth of lymphatic vessels that transport fluid and sodium. If this factor is released in higher amounts, lymphatic vessels grow into the skin and ensure that the stored sodium can be transported away again.
In animal experiments Professor Titze’s research team blocked this mechanism. As a result, the rats and mice in the experiment developed high blood pressure. “The immune cells apparently regulate salt balance and blood pressure,” Professor Titze said. “In addition, data from a first clinical study showed that large amounts of salt are stored in the skin of patients with high blood pressure.”

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>