Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The skeleton: Size matters

29.10.2009
Consortia of European scientists show new role for master patterning genes in defining number of vertebrae in spine

Vertebrates have in common a skeleton made of segments, the vertebrae. During development of the embryo, each segment is added in a time dependent manner, from the head-end to the tail-end: the first segments to be added become the vertebrae of the neck, later segments become the vertebrae with ribs and the last ones the vertebra located in the tail (in the case of a mouse, for example).

In this process, it is crucial that, on the one hand, each segment, as it matures, becomes the correct type of vertebra and, on the other, that the number of vertebrae in the skeleton, and therefore the size of the spine, are minutely controlled.

It has long been known that the identity of each vertebra is due to the activation of a class of genes called Hox. Now, in the latest issue of Developmental Cell (*) researchers from the Instituto Gulbenkian de Ciência, in Portugal, the Institute KNAW and University Medical Centre (The Netherlands) show that besides determining the identity of the vertebrae, Hox genes also have a say in how many are going to be formed at all.

... more about:
»Cdx genes »Hox »Hox gene »cell death »mouse embryo

There is a huge diversity in number of vertebrae in animals: some have many vertebrae, and are thus longer, like a snake, and others have fewer vertebrae and are shorter, like mice. Vertebrae are made from precursors known as somites, formed in the embryos, sequentially from head to tail. This process is directly linked to growth of the embryo at its tail end: the more it grows, the more somites it makes and, as a result the more vertebrae the adult animal has. Of the many genes involved in this growth, a family of genes called Cdx are known to play a central role.

According to Moises Mallo, group leader at the IGC and one of the lead authors on the paper, 'We knew that some Hox genes are not activated when the Cdx genes are turned off, but this was always considered to be part of a mechanism to ensure that each new somite generates the appropriate type of vertebra. We now show that the activation of Hox genes is also part of how Cdx genes promote growth of the embryo at its tail end: when the relevant Hox genes were activated in the Cdx mouse mutants the embryos recovered and were born with a quite normal vertebral column, proving that the Hox genes were able to compensate for the lack of Cdx. This is a novel role for Hox genes'.

The researchers also show that some Hox genes are important to stop the addition of extra segments, at later stages in development. Indeed, if Hox genes that are usually active later on in development, in the last forming segments, are turned on before their time, in mouse embryos, they interrupt addition of new segments and lead to a tail truncation in the vertebral column.

As Mallo puts it, 'This paper provides and important addition to a long-standing view on the role of the Hox genes – one of the most-studied genes involved in embryonic development: that it controls not only identity, but also number of vertebrae. Although these observations were made in the tail-end region of the embryo, it is very likely that similar mechanisms might be acting to determine the number of segments closer to the head".

(*)Young et al., Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos, Developmental Cell (2009), doi:10.1016/j.devcel.2009.08.010

Silvia Castro | EurekAlert!
Further information:
http://www.gulbenkian.pt

Further reports about: Cdx genes Hox Hox gene cell death mouse embryo

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>