Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size matters: Length of songbirds’ playlists linked to brain region proportions

19.09.2011
Call a bird "birdbrained" and they may call "fowl." Cornell University researchers have proven that the capacity for learning in birds is not linked to overall brain size, but to the relative size and proportion of their specific brain regions.

Songbirds with upper brain regions that are larger in relation to lower regions have a greater capacity for learning songs. Higher brain areas control the majority of cognitive and learning functions, while lower brain areas control more motor functions, according to the new study published in the Proceedings of the National Academy of Sciences.

The research shows that when a bird's higher cortex-like brain area called the high vocal center (HVC) is larger relative to the lower brain area called RA, or if the RA is large relative to an even lower area called N12, the species is able to learn dozens of different notes. Such species as mockingbirds, catbirds, European blackbirds and European warblers can learn hundreds of notes because they have those relative size differences in both sets of areas.

"HVC size by itself only modestly predicts capacity for song learning, but relative size is a very strong predictor," said Tim DeVoogd, professor of psychology and of neurobiology and behavior and the paper's senior author. Jordan Moore, a graduate student in DeVoogd's lab, was the paper's lead author. "Our work is the first to demonstrate a basic principle of evolution using a specific behavior – having greater cortical control of brain function gives greater behavioral flexibility, including enhanced learning."

In bird species with great capacities for song learning, higher brain areas likely became built up over lower areas as a result of sexual selection, he said, where females mated with males that had more elaborate songs. Repeated over millions of generations, the structure of the brains of these species changed such that higher brain areas became larger relative to lower areas.

The research suggests that relative brain area sizes may offer a mechanism by which a prominent form of evolution has worked. In birds and perhaps in humans, selection for increased learning capacity may have acted by prolonging the development of the last parts of the brain to grow. Humans are able to speak and to set and achieve complex goals because of prolonged development of higher brain areas, such as the cortex and frontal cortex in particular. These areas of the brain are the last to mature and do not fully develop until humans are in their early 20s, DeVoogd said.

In the study, the researchers collected three males each from 49 common species representing an extensive variety of songbirds from the United States, Europe and South Africa, where each bird was actively singing to attract females as part of his reproductive cycle. They then examined and measured the brain areas.

"Motor pathway convergence predicts syllable repertoire size in oscine birds," published Sept. 12, 2011 in the Proceedings of the National Academy of Sciences. Co-authors included Tamas Szekely of the University of Bath and Jozsef Buki of the Hungarian Ornithological Institute. The study was funded by the National Science Foundation and the Hungarian Joint Scientific Fund.

Contact Syl Kacapyr for information about Cornell's TV and radio studios.

Syl Kacapyr | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>