Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size matters: Length of songbirds’ playlists linked to brain region proportions

19.09.2011
Call a bird "birdbrained" and they may call "fowl." Cornell University researchers have proven that the capacity for learning in birds is not linked to overall brain size, but to the relative size and proportion of their specific brain regions.

Songbirds with upper brain regions that are larger in relation to lower regions have a greater capacity for learning songs. Higher brain areas control the majority of cognitive and learning functions, while lower brain areas control more motor functions, according to the new study published in the Proceedings of the National Academy of Sciences.

The research shows that when a bird's higher cortex-like brain area called the high vocal center (HVC) is larger relative to the lower brain area called RA, or if the RA is large relative to an even lower area called N12, the species is able to learn dozens of different notes. Such species as mockingbirds, catbirds, European blackbirds and European warblers can learn hundreds of notes because they have those relative size differences in both sets of areas.

"HVC size by itself only modestly predicts capacity for song learning, but relative size is a very strong predictor," said Tim DeVoogd, professor of psychology and of neurobiology and behavior and the paper's senior author. Jordan Moore, a graduate student in DeVoogd's lab, was the paper's lead author. "Our work is the first to demonstrate a basic principle of evolution using a specific behavior – having greater cortical control of brain function gives greater behavioral flexibility, including enhanced learning."

In bird species with great capacities for song learning, higher brain areas likely became built up over lower areas as a result of sexual selection, he said, where females mated with males that had more elaborate songs. Repeated over millions of generations, the structure of the brains of these species changed such that higher brain areas became larger relative to lower areas.

The research suggests that relative brain area sizes may offer a mechanism by which a prominent form of evolution has worked. In birds and perhaps in humans, selection for increased learning capacity may have acted by prolonging the development of the last parts of the brain to grow. Humans are able to speak and to set and achieve complex goals because of prolonged development of higher brain areas, such as the cortex and frontal cortex in particular. These areas of the brain are the last to mature and do not fully develop until humans are in their early 20s, DeVoogd said.

In the study, the researchers collected three males each from 49 common species representing an extensive variety of songbirds from the United States, Europe and South Africa, where each bird was actively singing to attract females as part of his reproductive cycle. They then examined and measured the brain areas.

"Motor pathway convergence predicts syllable repertoire size in oscine birds," published Sept. 12, 2011 in the Proceedings of the National Academy of Sciences. Co-authors included Tamas Szekely of the University of Bath and Jozsef Buki of the Hungarian Ornithological Institute. The study was funded by the National Science Foundation and the Hungarian Joint Scientific Fund.

Contact Syl Kacapyr for information about Cornell's TV and radio studios.

Syl Kacapyr | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>