Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Molecule Detection of Contaminants, Explosives or Diseases Now Possible

04.01.2016

A technique to combine the ultrasensitivity of surface enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples. This combination of slippery surface and laser-based spectroscopy will open new applications in analytical chemistry, molecular diagnostics, environmental monitoring and national security.

The researchers, led by Tak-Sing Wong, assistant professor of mechanical engineering and the Wormley Family Early Career Professor in Engineering, call there invention SLIPSERS, which is a combination of Wong’s slippery liquid-infused porous surfaces (SLIPS), which is a biologically inspired surface based on the Asian pitcher plant, and SERS.


Shikuan Yang, Birgitt Boschitsch Stogin and Tak-Sing Wong/Penn State

Artistic illustration showing an ultrasensitive detection platform termed slippery liquid infused porous surface-enhanced Raman scattering (SLIPSERS). In this platform, an aqueous or oil droplet containing gold nanoparticles and captured analytes is allowed to evaporate on a slippery substrate, leading to the formation of a highly compact nanoparticle aggregate for surface enhanced Raman scattering (SERS) detection.

“We have been trying to develop a sensor platform that allows us to detect chemicals or biomolecules at a single molecule level whether they are dispersed in air, liquid phase, or bound to a solid,” Wong said. “Being able to identify a single molecule is already very difficult. Being able to detect those molecules in all three phases, that is really challenging.”

Wong needed the help of post-doctoral fellow Shikuan Yang to combine SERS and SLIPS into a single process. Yang was trained in Raman spectroscopy in the characterization laboratory of Penn State’s Materials Research Institute. His expertise in the SERS technique and Wong’s knowledge of SLIPS enabled them to develop the SLIPSERS technology. Their work appears online today in Proceedings of the National Academy of Sciences, USA (PNAS).

Raman spectroscopy is a well-known method of analyzing materials in a liquid form using a laser to interact with the vibrating molecules in the sample. The molecule’s unique vibration shifts the frequency of the photons in the laser light beam up or down in a way that is characteristic of only that type of molecule. Typically, the Raman signal is very weak and has to be enhanced in some way for detection. In the 1970s, researchers found that chemically roughening the surface of a silver substrate concentrated the Raman signal of the material adsorbed on the silver, and SERS was born.

Wong developed SLIPS as a post-doctoral researcher at Harvard University. SLIPS is composed of a surface coated with regular arrays of nanoscale posts infused with a liquid lubricant that does not mix with other liquids. The small spacing of the nanoposts traps the liquid between the posts and the result is a slippery surface that nothing adheres to.

“The problem,” Wong said, “is that trying to find a few molecules in a liquid medium is like trying to find a needle in a haystack. But if we can develop a process to gradually shrink the size of this liquid volume, we can get a better signal. To do that we need a surface that allows the liquid to evaporate uniformly until it gets to the micro or nanoscale. Other surfaces can’t do that, and that is where SLIPS comes in.”

If a droplet of liquid is placed on any normal surface, it will begin to shrink from the top down. When the liquid evaporates, the target molecules are left in random configurations with weak signals. But if all the molecules can be clustered among the gold nanoparticles, they will produce a very strong Raman signal.

Shikuan Yang explained: “First we need to use noble metal nanoparticles, like gold. And then we have to assemble them so they make nanoscale gaps between the particles, called SERS “hot spots”. If we have a laser with the right wavelength, the electrons will oscillate and a strong magnetic field will form in the gap area. This gives us very strong SERS signals of the molecules located within the gaps.”

Although there are other techniques that allow researchers to concentrate molecules on a surface, those techniques mostly work with water as the medium. SLIPS can be used with any organic liquids.

“Our technique opens up larger possibilities for people to use other types of solvents to do single molecule SERS detection, such as environmental detection in soil samples. If you can only use water, that is very limiting,” Yang said. “In biology, researchers might want to detect a single base pair mismatch in DNA. Our platform will give them that sensitivity.”

One of the next steps will be to detect biomarkers in blood for disease diagnosis at the very early stages of cancer when the disease is more easily treatable.

“We have detected a common protein, but haven’t detected cancer yet,” Yang said.

Although the SLIPS technology is patented and licensed, the team has not sought patent protection on their SLIPSERS work.

“We believe that offering this technology to the public will get it developed at a much faster pace,” said Professor Wong. “This is a powerful platform that we think many people will benefit from.”

In addition to Yang and Wong, postdoctoral Fellow Xianming Dai, and graduate student Birgitt Boschitsch Stogin contributed to the paper titled "Ultrasensitive Surface-Enhanced Raman Scattering Detection in Common Fluids."

The research was funded by the National Science Foundation.

Contact Information
Walter Mills
Editor Publications
wem12@psu.edu
Phone: 814-865-0285

Walter Mills | newswise
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>