Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Molecule Detection of Contaminants, Explosives or Diseases Now Possible

04.01.2016

A technique to combine the ultrasensitivity of surface enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples. This combination of slippery surface and laser-based spectroscopy will open new applications in analytical chemistry, molecular diagnostics, environmental monitoring and national security.

The researchers, led by Tak-Sing Wong, assistant professor of mechanical engineering and the Wormley Family Early Career Professor in Engineering, call there invention SLIPSERS, which is a combination of Wong’s slippery liquid-infused porous surfaces (SLIPS), which is a biologically inspired surface based on the Asian pitcher plant, and SERS.


Shikuan Yang, Birgitt Boschitsch Stogin and Tak-Sing Wong/Penn State

Artistic illustration showing an ultrasensitive detection platform termed slippery liquid infused porous surface-enhanced Raman scattering (SLIPSERS). In this platform, an aqueous or oil droplet containing gold nanoparticles and captured analytes is allowed to evaporate on a slippery substrate, leading to the formation of a highly compact nanoparticle aggregate for surface enhanced Raman scattering (SERS) detection.

“We have been trying to develop a sensor platform that allows us to detect chemicals or biomolecules at a single molecule level whether they are dispersed in air, liquid phase, or bound to a solid,” Wong said. “Being able to identify a single molecule is already very difficult. Being able to detect those molecules in all three phases, that is really challenging.”

Wong needed the help of post-doctoral fellow Shikuan Yang to combine SERS and SLIPS into a single process. Yang was trained in Raman spectroscopy in the characterization laboratory of Penn State’s Materials Research Institute. His expertise in the SERS technique and Wong’s knowledge of SLIPS enabled them to develop the SLIPSERS technology. Their work appears online today in Proceedings of the National Academy of Sciences, USA (PNAS).

Raman spectroscopy is a well-known method of analyzing materials in a liquid form using a laser to interact with the vibrating molecules in the sample. The molecule’s unique vibration shifts the frequency of the photons in the laser light beam up or down in a way that is characteristic of only that type of molecule. Typically, the Raman signal is very weak and has to be enhanced in some way for detection. In the 1970s, researchers found that chemically roughening the surface of a silver substrate concentrated the Raman signal of the material adsorbed on the silver, and SERS was born.

Wong developed SLIPS as a post-doctoral researcher at Harvard University. SLIPS is composed of a surface coated with regular arrays of nanoscale posts infused with a liquid lubricant that does not mix with other liquids. The small spacing of the nanoposts traps the liquid between the posts and the result is a slippery surface that nothing adheres to.

“The problem,” Wong said, “is that trying to find a few molecules in a liquid medium is like trying to find a needle in a haystack. But if we can develop a process to gradually shrink the size of this liquid volume, we can get a better signal. To do that we need a surface that allows the liquid to evaporate uniformly until it gets to the micro or nanoscale. Other surfaces can’t do that, and that is where SLIPS comes in.”

If a droplet of liquid is placed on any normal surface, it will begin to shrink from the top down. When the liquid evaporates, the target molecules are left in random configurations with weak signals. But if all the molecules can be clustered among the gold nanoparticles, they will produce a very strong Raman signal.

Shikuan Yang explained: “First we need to use noble metal nanoparticles, like gold. And then we have to assemble them so they make nanoscale gaps between the particles, called SERS “hot spots”. If we have a laser with the right wavelength, the electrons will oscillate and a strong magnetic field will form in the gap area. This gives us very strong SERS signals of the molecules located within the gaps.”

Although there are other techniques that allow researchers to concentrate molecules on a surface, those techniques mostly work with water as the medium. SLIPS can be used with any organic liquids.

“Our technique opens up larger possibilities for people to use other types of solvents to do single molecule SERS detection, such as environmental detection in soil samples. If you can only use water, that is very limiting,” Yang said. “In biology, researchers might want to detect a single base pair mismatch in DNA. Our platform will give them that sensitivity.”

One of the next steps will be to detect biomarkers in blood for disease diagnosis at the very early stages of cancer when the disease is more easily treatable.

“We have detected a common protein, but haven’t detected cancer yet,” Yang said.

Although the SLIPS technology is patented and licensed, the team has not sought patent protection on their SLIPSERS work.

“We believe that offering this technology to the public will get it developed at a much faster pace,” said Professor Wong. “This is a powerful platform that we think many people will benefit from.”

In addition to Yang and Wong, postdoctoral Fellow Xianming Dai, and graduate student Birgitt Boschitsch Stogin contributed to the paper titled "Ultrasensitive Surface-Enhanced Raman Scattering Detection in Common Fluids."

The research was funded by the National Science Foundation.

Contact Information
Walter Mills
Editor Publications
wem12@psu.edu
Phone: 814-865-0285

Walter Mills | newswise
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>