Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single gene might explain dramatic differences among people with schizophrenia

05.03.2013
Some of the dramatic differences seen among patients with schizophrenia may be explained by a single gene that regulates a group of other schizophrenia risk genes. These findings appear in a new imaging-genetics study from the Centre for Addiction and Mental Health (CAMH).

The study revealed that people with schizophrenia who had a particular version of the microRNA-137 gene (or MIR137), tended to develop the illness at a younger age and had distinct brain features – both associated with poorer outcomes – compared to patients who did not have this version. This work, led by Drs. Aristotle Voineskos and James Kennedy, appears in the latest issue of Molecular Psychiatry.

Treating schizophrenia is particularly challenging as the illness can vary from patient to patient. Some individuals stay hospitalized for years, while others respond well to treatment.

"What's exciting about this study is that we could have a legitimate answer as to why some of these differences occur," explained Dr. Voineskos, a clinician-scientist in CAMH's Campbell Family Mental Health Research Institute. "In the future, we might have the capability of using this gene to tell us about prognosis and how a person might respond to treatment."

"Drs. Voineskos and Kennedy's findings are very important as they provide new insights into the genetic bases of this condition that affects thousands of Canadians and their families," said Dr. Anthony Phillips, Scientific Director at the Canadian Institutes of Health Research Institute of Neurosciences, Mental Health and Addiction.

Also, until now, sex has been the strongest predictor of the age at which schizophrenia develops in individuals. Typically, women tend to develop the illness a few years later than men, and experience a milder form of the disease.

"We showed that this gene has a bigger effect on age-at-onset than one's gender has," said Dr. Voineskos, who heads the Kimel Family Translational Imaging-Genetics Research Laboratory at CAMH. "This may be a paradigm shift for the field."

The researchers studied MIR137 — a gene involved in turning on and off other schizophrenia-related genes — in 510 individuals living with schizophrenia. The scientists found that patients with a specific version of the gene tended to develop the illness at a younger age, around 20.8 years of age, compared to 23.4 years of age among those without this version.

"Although three years of difference in age-at-onset may not seem large, those years are important in the final development of brain circuits in the young adult," said Dr. Kennedy, Director of CAMH's Neuroscience Research Department. "This can have major impact on disease outcome."

In a separate part of the study involving 213 people, the researchers used MRI and diffusion tensor-magnetic resonance brain imaging (DT-MRI). They found that individuals who had the particular gene version tended to have unique brain features. These features included a smaller hippocampus, which is a brain structure involved in memory, and larger lateral ventricles, which are fluid-filled structures associated with disease outcome. As well, these patients tended to have more impairment in white matter tracts, which are structures connecting brain regions, and serving as the information highways of the brain.

Developing tests that screen for versions of this gene could be helpful in treating patients earlier and more effectively.

"We're hoping that in the near future we can use this combination of genetics and brain imaging to predict how severe a version of illness someone might have," said Dr. Voineskos. "This would allow us to plan earlier for specific treatments and clinical service delivery and pursue more personalized treatment options right from the start."

This research was funded by the Canadian Institutes of Health Research, the Brain & Behavior Research Foundation and the Ontario Mental Health Foundation.

Media contact: Anita Dubey; (416) 535-8501 ext. 4932; anita.dubey@camh.ca.

The Centre for Addiction and Mental Health (CAMH) is Canada's largest mental health and addiction teaching hospital, as well as one of the world's leading research centres in its field.

CAMH combines clinical care, research, education, policy development and health promotion to help transform the lives of people affected by mental health and addiction issues. CAMH is fully affiliated with the University of Toronto, and is a Pan American Health Organization/World Health Organization Collaborating Centre. For more information, please visit www.camh.ca.

The Canadian Institutes of Health Research (CIHR) is the Government of Canada's health research investment agency. CIHR's mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

Anita Dubey | EurekAlert!
Further information:
http://www.camh.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>