Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single gene might explain dramatic differences among people with schizophrenia

05.03.2013
Some of the dramatic differences seen among patients with schizophrenia may be explained by a single gene that regulates a group of other schizophrenia risk genes. These findings appear in a new imaging-genetics study from the Centre for Addiction and Mental Health (CAMH).

The study revealed that people with schizophrenia who had a particular version of the microRNA-137 gene (or MIR137), tended to develop the illness at a younger age and had distinct brain features – both associated with poorer outcomes – compared to patients who did not have this version. This work, led by Drs. Aristotle Voineskos and James Kennedy, appears in the latest issue of Molecular Psychiatry.

Treating schizophrenia is particularly challenging as the illness can vary from patient to patient. Some individuals stay hospitalized for years, while others respond well to treatment.

"What's exciting about this study is that we could have a legitimate answer as to why some of these differences occur," explained Dr. Voineskos, a clinician-scientist in CAMH's Campbell Family Mental Health Research Institute. "In the future, we might have the capability of using this gene to tell us about prognosis and how a person might respond to treatment."

"Drs. Voineskos and Kennedy's findings are very important as they provide new insights into the genetic bases of this condition that affects thousands of Canadians and their families," said Dr. Anthony Phillips, Scientific Director at the Canadian Institutes of Health Research Institute of Neurosciences, Mental Health and Addiction.

Also, until now, sex has been the strongest predictor of the age at which schizophrenia develops in individuals. Typically, women tend to develop the illness a few years later than men, and experience a milder form of the disease.

"We showed that this gene has a bigger effect on age-at-onset than one's gender has," said Dr. Voineskos, who heads the Kimel Family Translational Imaging-Genetics Research Laboratory at CAMH. "This may be a paradigm shift for the field."

The researchers studied MIR137 — a gene involved in turning on and off other schizophrenia-related genes — in 510 individuals living with schizophrenia. The scientists found that patients with a specific version of the gene tended to develop the illness at a younger age, around 20.8 years of age, compared to 23.4 years of age among those without this version.

"Although three years of difference in age-at-onset may not seem large, those years are important in the final development of brain circuits in the young adult," said Dr. Kennedy, Director of CAMH's Neuroscience Research Department. "This can have major impact on disease outcome."

In a separate part of the study involving 213 people, the researchers used MRI and diffusion tensor-magnetic resonance brain imaging (DT-MRI). They found that individuals who had the particular gene version tended to have unique brain features. These features included a smaller hippocampus, which is a brain structure involved in memory, and larger lateral ventricles, which are fluid-filled structures associated with disease outcome. As well, these patients tended to have more impairment in white matter tracts, which are structures connecting brain regions, and serving as the information highways of the brain.

Developing tests that screen for versions of this gene could be helpful in treating patients earlier and more effectively.

"We're hoping that in the near future we can use this combination of genetics and brain imaging to predict how severe a version of illness someone might have," said Dr. Voineskos. "This would allow us to plan earlier for specific treatments and clinical service delivery and pursue more personalized treatment options right from the start."

This research was funded by the Canadian Institutes of Health Research, the Brain & Behavior Research Foundation and the Ontario Mental Health Foundation.

Media contact: Anita Dubey; (416) 535-8501 ext. 4932; anita.dubey@camh.ca.

The Centre for Addiction and Mental Health (CAMH) is Canada's largest mental health and addiction teaching hospital, as well as one of the world's leading research centres in its field.

CAMH combines clinical care, research, education, policy development and health promotion to help transform the lives of people affected by mental health and addiction issues. CAMH is fully affiliated with the University of Toronto, and is a Pan American Health Organization/World Health Organization Collaborating Centre. For more information, please visit www.camh.ca.

The Canadian Institutes of Health Research (CIHR) is the Government of Canada's health research investment agency. CIHR's mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

Anita Dubey | EurekAlert!
Further information:
http://www.camh.ca

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>