Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singing in Slow Motion

14.11.2008
As anyone who watched the Olympics can appreciate, timing matters when it comes to complex sequential actions. It can make a difference between a perfect handspring and a fall, for instance. But what controls that timing? MIT scientists are closing in on the brain regions responsible, thanks to some technical advances and some help from songbirds.

“All our movements, from talking and walking to acrobatics or piano playing, are sequential behaviors,” explained Michale Fee, an investigator in the McGovern Institute for Brain Research at MIT and an associate professor in MIT’s Department of Brain and Cognitive Sciences. “But we haven’t had the necessary tools to understand how timing is generated within the brain.”

Now Fee and colleagues report in the Nov. 13 issue of Nature a new method for altering the speed of brain activity. And using that technique, “we think we have found the clock that controls the timing of the bird’s song,” Fee said.

The zebra finch’s song is widely studied as a model for understanding how the brain produces complex behavior sequences. Each song lasts about one second, and contains multiple syllables in a highly stereotypic sequence. Two brain regions — the High Vocal Center (HVC) and the robust nucleus of the arcopallium (RA) — are known to be important for singing, because deactivating either region prevents song production. But uncovering the clock mechanism required a more subtle method.

Accordingly, Fee’s group devised a technique to slow down different parts of the brain. They took advantage of the fact that all biological processes are influenced by temperature. Just as molasses run slower in January, neurons function more slowly when they are cooled down.

The authors constructed a tiny Peltier cooling apparatus based on a device similar to those used in portable electronic beverage coolers. Then they used this device to produce a small cooling effect that could be localized to precise parts of the brain.

“We suspected that cooling different brain regions involved in singing might alter the song in different ways,” explained first author Michael Long, a postdoctoral researcher in the Fee lab.

Cooling the RA brain region had almost no effect on the bird’s song. But cooling HVC produced a dramatic effect. The song slowed in proportion to the degree of cooling, with the biggest temperature change (a 10 degrees Celsius reduction) causing the song to stretch out by around 30 percent.

Not only did the overall duration of the song increase, so did each individual syllable, so the overall rhythmic structure was preserved without changing the sounds within the song. The effect can be compared to a music box or piano roll. Rotating the drum more slowly slows the tempo of the music without affecting individual notes.

Following this analogy, HVC corresponds to the mechanism that turns the drum; cooling it is equivalent to reducing the speed of rotation. RA, which receives timing information from HVC, corresponds to the read-out mechanism that translates the sequence of bumps or holes into a corresponding sequence of notes.

What intrigues Fee and colleagues now is: How does HVC work to control song timing? Their previous electrical recordings of individual HVC neurons suggest it functions like a cascade of falling dominoes, with waves of activity propagating at a fixed speed through the neural circuitry — an idea they are now testing.

“We can also use this cooling technology to discover which brain regions control the timing of different complex behaviors in different animals, something that has been very difficult to assess until now,” Fee said. “We know that HVC is related in some ways to [the] human cortex, so it could be showing us a very general mechanism for representing the passage of time within the brain.”

This study was funded by the National Institutes of Health and the Human Frontiers Science Project.

About the McGovern Institute at MIT
The McGovern Institute for Brain Research at MIT is led by a team of world-renowned neuroscientists committed to meeting two great challenges of modern science: understanding how the brain works and discovering new ways to prevent or treat brain disorders. The McGovern Institute was established in 2000 by Patrick J. McGovern and Lore Harp McGovern, who are committed to improving human welfare, communication and understanding through their support for neuroscience research. The director is Robert Desimone, formerly the head of intramural research at the National Institute of Mental Health.

Teresa Herbert | Newswise Science News
Further information:
http://www.mit.edu
http://web.mit.edu/mcgovern/

Further reports about: Brain Brain Research Control HVC Health Science Slow Motion bird’s song effect mechanism sequence singing zebra finch’s

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>