Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singing in Slow Motion

14.11.2008
As anyone who watched the Olympics can appreciate, timing matters when it comes to complex sequential actions. It can make a difference between a perfect handspring and a fall, for instance. But what controls that timing? MIT scientists are closing in on the brain regions responsible, thanks to some technical advances and some help from songbirds.

“All our movements, from talking and walking to acrobatics or piano playing, are sequential behaviors,” explained Michale Fee, an investigator in the McGovern Institute for Brain Research at MIT and an associate professor in MIT’s Department of Brain and Cognitive Sciences. “But we haven’t had the necessary tools to understand how timing is generated within the brain.”

Now Fee and colleagues report in the Nov. 13 issue of Nature a new method for altering the speed of brain activity. And using that technique, “we think we have found the clock that controls the timing of the bird’s song,” Fee said.

The zebra finch’s song is widely studied as a model for understanding how the brain produces complex behavior sequences. Each song lasts about one second, and contains multiple syllables in a highly stereotypic sequence. Two brain regions — the High Vocal Center (HVC) and the robust nucleus of the arcopallium (RA) — are known to be important for singing, because deactivating either region prevents song production. But uncovering the clock mechanism required a more subtle method.

Accordingly, Fee’s group devised a technique to slow down different parts of the brain. They took advantage of the fact that all biological processes are influenced by temperature. Just as molasses run slower in January, neurons function more slowly when they are cooled down.

The authors constructed a tiny Peltier cooling apparatus based on a device similar to those used in portable electronic beverage coolers. Then they used this device to produce a small cooling effect that could be localized to precise parts of the brain.

“We suspected that cooling different brain regions involved in singing might alter the song in different ways,” explained first author Michael Long, a postdoctoral researcher in the Fee lab.

Cooling the RA brain region had almost no effect on the bird’s song. But cooling HVC produced a dramatic effect. The song slowed in proportion to the degree of cooling, with the biggest temperature change (a 10 degrees Celsius reduction) causing the song to stretch out by around 30 percent.

Not only did the overall duration of the song increase, so did each individual syllable, so the overall rhythmic structure was preserved without changing the sounds within the song. The effect can be compared to a music box or piano roll. Rotating the drum more slowly slows the tempo of the music without affecting individual notes.

Following this analogy, HVC corresponds to the mechanism that turns the drum; cooling it is equivalent to reducing the speed of rotation. RA, which receives timing information from HVC, corresponds to the read-out mechanism that translates the sequence of bumps or holes into a corresponding sequence of notes.

What intrigues Fee and colleagues now is: How does HVC work to control song timing? Their previous electrical recordings of individual HVC neurons suggest it functions like a cascade of falling dominoes, with waves of activity propagating at a fixed speed through the neural circuitry — an idea they are now testing.

“We can also use this cooling technology to discover which brain regions control the timing of different complex behaviors in different animals, something that has been very difficult to assess until now,” Fee said. “We know that HVC is related in some ways to [the] human cortex, so it could be showing us a very general mechanism for representing the passage of time within the brain.”

This study was funded by the National Institutes of Health and the Human Frontiers Science Project.

About the McGovern Institute at MIT
The McGovern Institute for Brain Research at MIT is led by a team of world-renowned neuroscientists committed to meeting two great challenges of modern science: understanding how the brain works and discovering new ways to prevent or treat brain disorders. The McGovern Institute was established in 2000 by Patrick J. McGovern and Lore Harp McGovern, who are committed to improving human welfare, communication and understanding through their support for neuroscience research. The director is Robert Desimone, formerly the head of intramural research at the National Institute of Mental Health.

Teresa Herbert | Newswise Science News
Further information:
http://www.mit.edu
http://web.mit.edu/mcgovern/

Further reports about: Brain Brain Research Control HVC Health Science Slow Motion bird’s song effect mechanism sequence singing zebra finch’s

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>