Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simply Complex – The Origin of Our Body Axes

25.08.2014

Evolutionary ties between humans and prehistoric animals – study published in “Nature”

The fresh-water polyp Hydra, a member of the over 600-million-year-old phylum Cnidaria, is famous for its virtually unlimited regenerative capability and hence a perfect model for molecular stem cell and regeneration research.

This polyp, with its simple structure and radial symmetry, can help us understand how our body axes came to evolve. Scientists from Heidelberg and Vienna have brought this evidence to light through their research on the formation of new polyps in the Hydra through asexual reproduction. Their findings have now been published in the journal “Nature”.

Project participants include a working group under the direction of Prof. Dr. Thomas Holstein and Asst. Prof. Dr. Suat Özbek at the Centre for Organismal Studies (COS) of Heidelberg University and Dr. Heiko Schmidt at CIBIV (Center for Integrative Bioinformatics Vienna) at Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna.

The Hydra reproduces asexually by producing buds on the body wall of the adult, which then mature to form new polyps. The Heidelberg researchers delved into this process at the molecular level and discovered that a signal pathway is used that triggers the left-right asymmetry of organs in higher animals, including humans. The processes that play out at the molecular level are strikingly similar to those that trigger the formation of body axes in early embryos of vertebrates.

One fundamental question in biology is what constitutes the basic type of the animal body plan and how did all the more complex forms, including that of humans, evolve from it. At the simplest level, this body plan can be described by the three axes as defined in the Cartesian coordinate system.

These three axes – the familiar X, Y and Z axes from geometry – are the anterior-posterior (AP) axis, which determines the position of the mouth in front and the anus at the rear, the dorsal-ventral (DV) axis, which in vertebrates separates the front of the body from the back, and the left-right (LR) axis, which creates a mirror-like symmetry of our extremities and left-right asymmetry of the organs.

These three body axes are defined early on in embryonic development. A fertilized egg cell begins to divide, initially producing a ball-shaped “heap” of undifferentiated cells. It is in this early stage of the embryo that the position of the first opening of the body is determined, which simultaneously defines the AP axis.

“This process can be explained geometrically as a symmetry break, and other symmetry breaks follow that define the other two axes, the DV and LR axes,” explains Prof. Holstein from the Centre for Organismal Studies (COS).

The genetic basis for each of these body axes had already been identified in the embryonic development of humans, other vertebrates, and even in insects and worms. Evolutionarily highly-conserved molecular signal systems act as molecular vectors to define each of the body axes and control the formation of different cell types. Many of these so-called developmental genes also play a major role in the development of cancer.

In their molecular analyses of the stem cells and Wnt proteins of the freshwater polyp Hydra, which has only one clearly defined body axis with one opening, the researchers identified what is known as Nodal signalling in this primitive system.

“Until now we knew of this signal path only in bilaterally symmetric animals, where it is involved in establishing a signal centre for early embryonic development and left-right asymmetry. Using various pharmacological and genetic experiments, our group was able to demonstrate that the Hydra also has a Nodal-type gene, which together with the main target genes of the activated Nodal signal path, is involved in the asymmetrical positioning of the Hydra buds,” explains Dr. Hiroshi Watanabe, a member of Prof. Holstein’s group.

In the Hydra, the buds break away from the adult; in coral, another member of the Cnidaria family, the buds remain attached to the adult and form colonies with complex branches. The Nodal signal pathway is activated by components of the “primary” signal pathway that is responsible for the anterior-posterior axis (Wnt signal pathway). The Nodal pathway controls the development of the left-right body axis in bilaterally symmetric animals (e.g., vertebrates).

The Heidelberg study presents the first evidence of the existence and participation of the Nodal signal pathway in axis induction in a “radially” symmetric organism. “We assume that this was a starting point in the evolution of left-right axis formation in the bilaterally symmetric animals. Identifying just how this complex bilaterian body plan evolved opens up other exciting areas of research,” explains Prof. Holstein. These findings, however, already point to how similar the core molecular-level embryonic processes are between the simple Cnidaria and the vertebrates, including human beings.

Original publication:
Hiroshi Watanabe, Heiko A. Schmidt, Anne Kuhn, Stefanie K. Höger, Yigit Kocagöz, Nico Laumann-Lipp, Suat Özbek & Thomas W. Holstein: “Nodal signalling determines biradial asymmetry in Hydra”. Nature online (24 August 2014), doi:10.1038/nature13666

Contact:
Prof. Dr. Thomas Holstein
Centre for Organismal Studies
Phone +49 6221 54-5679
thomas.holstein@cos.uni-heidelberg.de

Communications and Marketing
Press Office
Phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Cnidaria Complex Hydra animals asymmetry humans pathway symmetric vertebrates

More articles from Life Sciences:

nachricht Learning from Nature: Genomic database standard alleviates search for novel antibiotics
02.09.2015 | Max-Planck-Institut für marine Mikrobiologie

nachricht Orang-utan females prefer cheek-padded males
02.09.2015 | Max Planck Institute for Evolutionary Anthropology, Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>